{"title":"The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: Conservation laws and their applications","authors":"R. Avalos , A. Freitas","doi":"10.1016/j.anihpc.2021.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The aim of this paper is to present a version of the generalized Pohozaev-Schoen identity in the context of asymptotically Euclidean manifolds. Since these kind of geometric identities have proven to be a very powerful tool when analysing different geometric problems for compact manifolds, we will present a variety of applications within this new context. Among these applications, we will show some rigidity results for asymptotically Euclidean Ricci-solitons and Codazzi-solitons. Also, we will present an almost-Schur type inequality valid in this non-compact setting which does not need restrictions on the </span>Ricci curvature. Finally, we will show how some rigidity results related with static potentials also follow from these type of conservation principles.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 6","pages":"Pages 1703-1724"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.01.002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000226","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this paper is to present a version of the generalized Pohozaev-Schoen identity in the context of asymptotically Euclidean manifolds. Since these kind of geometric identities have proven to be a very powerful tool when analysing different geometric problems for compact manifolds, we will present a variety of applications within this new context. Among these applications, we will show some rigidity results for asymptotically Euclidean Ricci-solitons and Codazzi-solitons. Also, we will present an almost-Schur type inequality valid in this non-compact setting which does not need restrictions on the Ricci curvature. Finally, we will show how some rigidity results related with static potentials also follow from these type of conservation principles.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.