Identifying Features in Forks

Shurui Zhou, Stefan Stanciulescu, Olaf Leßenich, Yingfei Xiong, A. Wąsowski, Christian Kästner
{"title":"Identifying Features in Forks","authors":"Shurui Zhou, Stefan Stanciulescu, Olaf Leßenich, Yingfei Xiong, A. Wąsowski, Christian Kästner","doi":"10.1145/3180155.3180205","DOIUrl":null,"url":null,"abstract":"Fork-based development has been widely used both in open source communities and in industry, because it gives developers flexibility to modify their own fork without affecting others. Unfortunately, this mechanism has downsides: When the number of forks becomes large, it is difficult for developers to get or maintain an overview of activities in the forks. Current tools provide little help. We introduce INFOX, an approach to automatically identify non-merged features in forks and to generate an overview of active forks in a project. The approach clusters cohesive code fragments using code and network-analysis techniques and uses information-retrieval techniques to label clusters with keywords. The clustering is effective, with 90% accuracy on a set of known features. In addition, a human-subject evaluation shows that INFOX can provide actionable insight for developers of forks.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"40 1","pages":"105-116"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Fork-based development has been widely used both in open source communities and in industry, because it gives developers flexibility to modify their own fork without affecting others. Unfortunately, this mechanism has downsides: When the number of forks becomes large, it is difficult for developers to get or maintain an overview of activities in the forks. Current tools provide little help. We introduce INFOX, an approach to automatically identify non-merged features in forks and to generate an overview of active forks in a project. The approach clusters cohesive code fragments using code and network-analysis techniques and uses information-retrieval techniques to label clusters with keywords. The clustering is effective, with 90% accuracy on a set of known features. In addition, a human-subject evaluation shows that INFOX can provide actionable insight for developers of forks.
识别fork中的特性
基于fork的开发在开源社区和工业中都得到了广泛的应用,因为它使开发人员能够灵活地修改自己的fork,而不会影响其他人。不幸的是,这种机制有缺点:当分支的数量变得很大时,开发人员很难获得或维护分支中活动的概述。目前的工具提供的帮助很少。我们将介绍INFOX,这是一种自动识别分支中未合并的特性并生成项目中活动分支概览的方法。该方法使用代码和网络分析技术聚类内聚代码片段,并使用信息检索技术用关键字标记聚类。聚类是有效的,在一组已知特征上有90%的准确率。此外,人类主题评估表明,INFOX可以为分叉的开发人员提供可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信