Sorption Properties of ZrO2-Analcime Composites in Relation to Cs(I) and Sr(II)

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
E. Kutikhina, T. Vereshchagina
{"title":"Sorption Properties of ZrO2-Analcime Composites in Relation to Cs(I) and Sr(II)","authors":"E. Kutikhina, T. Vereshchagina","doi":"10.17516/1998-2836-0258","DOIUrl":null,"url":null,"abstract":"Composite zeolite sorbents based on analcime with inclusions of hydrated zirconium dioxide (ZrO2-analcime) have been obtained by hydrothermal treatment of coal fly ash cenospheres with a high glass phase content in the presence of a zirconium compound and an alkaline activating agent at 150 °C and different stirring modes of the reaction mixture. The synthesis products were characterized by XRD, SEM-EDS, STA and low-temperature nitrogen adsorption; their sorption properties with respect to Cs+ and Sr2+ were studied in the pH range of 2–10. It was found that the ZrO2-analcime compositions surpass unmodified analcime by 2–5 times in terms of sorption of Cs+ and Sr2+ and by two orders of magnitude in terms of the distribution coefficient value (KD ~106 ml/g). The process of high-temperature solid-phase transformation of Cs+/Sr2+-exchanged forms of the compositions was studied, which simulates the process of conversion of water-soluble forms of Cs‑137 and Sr‑90 radionuclides into a mineral-like form. It was shown that at 1000 °C the ZrO2-analcime compositions with sorbed Cs+ and Sr2+ undergo the phase transformation resulting in polyphase systems of similar composition based on nepheline, tetragonal ZrO2, and glass phase","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite zeolite sorbents based on analcime with inclusions of hydrated zirconium dioxide (ZrO2-analcime) have been obtained by hydrothermal treatment of coal fly ash cenospheres with a high glass phase content in the presence of a zirconium compound and an alkaline activating agent at 150 °C and different stirring modes of the reaction mixture. The synthesis products were characterized by XRD, SEM-EDS, STA and low-temperature nitrogen adsorption; their sorption properties with respect to Cs+ and Sr2+ were studied in the pH range of 2–10. It was found that the ZrO2-analcime compositions surpass unmodified analcime by 2–5 times in terms of sorption of Cs+ and Sr2+ and by two orders of magnitude in terms of the distribution coefficient value (KD ~106 ml/g). The process of high-temperature solid-phase transformation of Cs+/Sr2+-exchanged forms of the compositions was studied, which simulates the process of conversion of water-soluble forms of Cs‑137 and Sr‑90 radionuclides into a mineral-like form. It was shown that at 1000 °C the ZrO2-analcime compositions with sorbed Cs+ and Sr2+ undergo the phase transformation resulting in polyphase systems of similar composition based on nepheline, tetragonal ZrO2, and glass phase
zro2 -铝胺复合材料对Cs(I)和Sr(II)的吸附性能
在含锆化合物和碱性活化剂的条件下,在150℃和不同搅拌方式下,对玻璃相含量较高的煤粉煤灰微球进行水热处理,得到了含水合二氧化锆包体(zro2 -安钙)的复合沸石吸附剂。对合成产物进行了XRD、SEM-EDS、STA和低温氮吸附表征;在2 ~ 10的pH范围内研究了它们对Cs+和Sr2+的吸附性能。结果表明,ZrO2-analcime组合物对Cs+和Sr2+的吸附量是未改性analcime的2-5倍,分配系数值(KD ~106 ml/g)比未改性analcime高出2个数量级。研究了Cs+/Sr2+交换形式的高温固相转变过程,模拟了Cs - 137和Sr - 90的水溶性形式转化为矿物形式的过程。结果表明,在1000℃时,吸附了Cs+和Sr2+的ZrO2-铝胺组分发生相变,形成了由榴石、四方ZrO2和玻璃相组成的多相体系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信