In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies
Pawan Gupta, Swati Gupta, S. Sinha, S. Sundaram, Vishnu Sharma, A. Munshi
{"title":"In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies","authors":"Pawan Gupta, Swati Gupta, S. Sinha, S. Sundaram, Vishnu Sharma, A. Munshi","doi":"10.1504/ijcbdd.2022.10053912","DOIUrl":null,"url":null,"abstract":"The receptor binding domain (RBD) of Spike-protein (S-protein) is responsible for virus entry via interaction with host protein ACE2 (angiotensin-converting enzyme 2), present on the cell surface of humans. Therefore, S-protein is an important target to block the entry of the SARS-CoV-2 into the cell for further growth. In the present study, phytochemical repurposing of natural molecules: narirutin, naringin, neohesperidin and hesperidin were performed against the RBD S-protein/ACE2 interface as well as the RBD of the S-protein using molecular docking. These natural molecules were found to have structural similarity to each other and had binding potential against the viral infections. It is first time reported here that the naringin and narirutin are having binding potential against both RBD S-protein/ACE2 interface and active site of RBD of S-protein using binding mode analysis. Hence, this study will open avenues for multitargeting similar natural molecules binding against the SARS-CoV-2 proteins as all reports are made in this single study.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"53 1","pages":"267-288"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2022.10053912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The receptor binding domain (RBD) of Spike-protein (S-protein) is responsible for virus entry via interaction with host protein ACE2 (angiotensin-converting enzyme 2), present on the cell surface of humans. Therefore, S-protein is an important target to block the entry of the SARS-CoV-2 into the cell for further growth. In the present study, phytochemical repurposing of natural molecules: narirutin, naringin, neohesperidin and hesperidin were performed against the RBD S-protein/ACE2 interface as well as the RBD of the S-protein using molecular docking. These natural molecules were found to have structural similarity to each other and had binding potential against the viral infections. It is first time reported here that the naringin and narirutin are having binding potential against both RBD S-protein/ACE2 interface and active site of RBD of S-protein using binding mode analysis. Hence, this study will open avenues for multitargeting similar natural molecules binding against the SARS-CoV-2 proteins as all reports are made in this single study.
刺突蛋白(s蛋白)的受体结合域(RBD)通过与宿主蛋白ACE2(血管紧张素转换酶2)的相互作用负责病毒进入,ACE2存在于人类细胞表面。因此,s蛋白是阻断SARS-CoV-2进入细胞进一步生长的重要靶点。本研究利用分子对接的方法,对天然分子narirutin、naringin、新橙皮苷和橙皮苷进行了RBD s -蛋白/ACE2界面的植物化学再利用,并对s -蛋白的RBD进行了分子对接。这些天然分子彼此具有结构相似性,并且具有抵抗病毒感染的结合潜力。结合模式分析首次报道柚皮苷和水杨素对RBD s -蛋白/ACE2界面和RBD s -蛋白活性位点均具有结合潜力。因此,这项研究将为针对SARS-CoV-2蛋白的多靶向类似天然分子结合开辟道路,因为所有报告都是在这项单一研究中完成的。