Wanyue Xu, Y. Sheng, Zuobai Zhang, Haibin Kan, Zhongzhi Zhang
{"title":"Power-Law Graphs Have Minimal Scaling of Kemeny Constant for Random Walks","authors":"Wanyue Xu, Y. Sheng, Zuobai Zhang, Haibin Kan, Zhongzhi Zhang","doi":"10.1145/3366423.3380093","DOIUrl":null,"url":null,"abstract":"The mean hitting time from a node i to a node j selected randomly according to the stationary distribution of random walks is called the Kemeny constant, which has found various applications. It was proved that over all graphs with N vertices, complete graphs have the exact minimum Kemeny constant, growing linearly with N. Here we study numerically or analytically the Kemeny constant on many sparse real-world and model networks with scale-free small-world topology, and show that their Kemeny constant also behaves linearly with N. Thus, sparse networks with scale-free and small-world topology are favorable architectures with optimal scaling of Kemeny constant. We then present a theoretically guaranteed estimation algorithm, which approximates the Kemeny constant for a graph in nearly linear time with respect to the number of edges. Extensive numerical experiments on model and real networks show that our approximation algorithm is both efficient and accurate.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The mean hitting time from a node i to a node j selected randomly according to the stationary distribution of random walks is called the Kemeny constant, which has found various applications. It was proved that over all graphs with N vertices, complete graphs have the exact minimum Kemeny constant, growing linearly with N. Here we study numerically or analytically the Kemeny constant on many sparse real-world and model networks with scale-free small-world topology, and show that their Kemeny constant also behaves linearly with N. Thus, sparse networks with scale-free and small-world topology are favorable architectures with optimal scaling of Kemeny constant. We then present a theoretically guaranteed estimation algorithm, which approximates the Kemeny constant for a graph in nearly linear time with respect to the number of edges. Extensive numerical experiments on model and real networks show that our approximation algorithm is both efficient and accurate.