X-ray ptychographic topography: A robust nondestructive tool for strain imaging

M. Verezhak, S. Van Petegem, A. Rodriguez-Fernandez, P. Godard, Klaus Wakonig, D. Karpov, V. Jacques, A. Menzel, L. Thilly, A. Diaz
{"title":"X-ray ptychographic topography: A robust nondestructive tool for strain imaging","authors":"M. Verezhak, S. Van Petegem, A. Rodriguez-Fernandez, P. Godard, Klaus Wakonig, D. Karpov, V. Jacques, A. Menzel, L. Thilly, A. Diaz","doi":"10.1103/PhysRevB.103.144107","DOIUrl":null,"url":null,"abstract":"Strain and defects in crystalline materials are responsible for the distinct mechanical, electric and magnetic properties of a desired material, making their study an essential task in material characterization, fabrication and design. Existing techniques for the visualization of strain fields, such as transmission electron microscopy and diffraction, are destructive and limited to thin slices of the materials. On the other hand, non-destructive X-ray imaging methods either have a reduced resolution or are not robust enough for a broad range of applications. Here we present X-ray ptychographic topography, a new method for strain imaging, and demonstrate its use on an InSb micro-pillar after micro-compression, where the strained region is visualized with a spatial resolution of 30 nm. Thereby, X-ray ptychographic topography proves itself as a robust non-destructive approach for the imaging of strain fields within bulk crystalline specimens with a spatial resolution of a few tens of nanometers.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.144107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Strain and defects in crystalline materials are responsible for the distinct mechanical, electric and magnetic properties of a desired material, making their study an essential task in material characterization, fabrication and design. Existing techniques for the visualization of strain fields, such as transmission electron microscopy and diffraction, are destructive and limited to thin slices of the materials. On the other hand, non-destructive X-ray imaging methods either have a reduced resolution or are not robust enough for a broad range of applications. Here we present X-ray ptychographic topography, a new method for strain imaging, and demonstrate its use on an InSb micro-pillar after micro-compression, where the strained region is visualized with a spatial resolution of 30 nm. Thereby, X-ray ptychographic topography proves itself as a robust non-destructive approach for the imaging of strain fields within bulk crystalline specimens with a spatial resolution of a few tens of nanometers.
x射线平面形貌:应变成像的一种强大的非破坏性工具
晶体材料中的应变和缺陷对所需材料的独特机械、电和磁性能负责,使其研究成为材料表征、制造和设计的重要任务。现有的应变场可视化技术,如透射电子显微镜和衍射,都是破坏性的,并且仅限于材料的薄片。另一方面,非破坏性x射线成像方法要么分辨率降低,要么不够强大,无法广泛应用。在这里,我们提出了一种新的应变成像方法——x射线平面形貌,并展示了它在微压缩后的InSb微柱上的应用,其中应变区域以30 nm的空间分辨率可视化。因此,x射线平面形貌学证明了它是一种强大的非破坏性方法,可以在几十纳米的空间分辨率下成像大块晶体样品中的应变场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信