Experimental and numerical characterisation of fibre orientation distributions in compression moulded carbon fibre SMC

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
C. Qian, D. Norman, M. Williams, K. Kendall
{"title":"Experimental and numerical characterisation of fibre orientation distributions in compression moulded carbon fibre SMC","authors":"C. Qian, D. Norman, M. Williams, K. Kendall","doi":"10.1080/14658011.2022.2108984","DOIUrl":null,"url":null,"abstract":"ABSTRACT A main challenge in design with long discontinuous fibre-based sheet moulding compound (SMC) is to understand flow-induced fibre orientation in the part. There are very few experimental methods for characterising the fibre orientation distribution in carbon fibre SMC. Consequently, even though process simulation models for predicting fibre orientation have been developed, the confidence in using these models remains low. This research aims to study the fibre orientation distribution in compression moulded carbon fibre SMC using a combined experimental and numerical approach. A recently developed micro-CT scanning-based method will be adopted to study carbon fibre SMC samples of various sizes. The data collected from the experimental study will be used to assess the predictive validity of selected commercial process simulation packages.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"9 1","pages":"436 - 444"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2022.2108984","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT A main challenge in design with long discontinuous fibre-based sheet moulding compound (SMC) is to understand flow-induced fibre orientation in the part. There are very few experimental methods for characterising the fibre orientation distribution in carbon fibre SMC. Consequently, even though process simulation models for predicting fibre orientation have been developed, the confidence in using these models remains low. This research aims to study the fibre orientation distribution in compression moulded carbon fibre SMC using a combined experimental and numerical approach. A recently developed micro-CT scanning-based method will be adopted to study carbon fibre SMC samples of various sizes. The data collected from the experimental study will be used to assess the predictive validity of selected commercial process simulation packages.
压缩成型碳纤维SMC中纤维取向分布的实验与数值表征
长不连续纤维基薄板模塑复合材料(SMC)设计的一个主要挑战是了解零件中流动诱导的纤维取向。表征碳纤维SMC中纤维取向分布的实验方法很少。因此,尽管已经开发了用于预测纤维取向的过程模拟模型,但使用这些模型的信心仍然很低。采用实验与数值相结合的方法研究了碳纤维SMC压缩成型过程中纤维的取向分布。将采用最近开发的基于微ct扫描的方法来研究不同尺寸的碳纤维SMC样品。从实验研究中收集的数据将用于评估选定的商业过程模拟软件包的预测有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plastics, Rubber and Composites
Plastics, Rubber and Composites 工程技术-材料科学:复合
CiteScore
4.10
自引率
0.00%
发文量
24
审稿时长
4 months
期刊介绍: Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信