Scalable High-Power Battery Emulator for Power Hardware-in-the-Loop Applications

IF 1 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bar Halivni, Daniel Beniaminson, Lee Maman, Adi Yankovich, M. Evzelman, M. Peretz
{"title":"Scalable High-Power Battery Emulator for Power Hardware-in-the-Loop Applications","authors":"Bar Halivni, Daniel Beniaminson, Lee Maman, Adi Yankovich, M. Evzelman, M. Peretz","doi":"10.1109/COMPEL52896.2023.10221018","DOIUrl":null,"url":null,"abstract":"This paper introduces a scalable power hardware-in-the-loop (PHiL) battery emulation system. The battery emulator enables the simulation of real battery voltage profiles with full power rating sink and sourcing capabilities using off-the-shelf components. The battery emulator tracks battery voltage, temperature, and current to provide real-time monitoring of the emulated battery’s state of charge (SOC) and remaining useful life (RUL). The emulator operates in a continuous battery emulation mode or a cyclic mode for repetitive battery testing. The new battery emulator can replace end-product batteries during system development and is realized in two parts, PC Graphical User Interface (GUI) and battery emulator (Hardware). A battery profile-generating algorithm is introduced to accurately reflect the behavior of an actual battery during emulation. All measured data and battery voltage profiles are transferred via Wi-Fi to enable maximal freedom in system deployment. An experimental prototype has been built and tested to verify the battery emulation operation. The prototype handles a maximum input voltage of 150V and an input current of 60A.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"2 1","pages":"1-6"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a scalable power hardware-in-the-loop (PHiL) battery emulation system. The battery emulator enables the simulation of real battery voltage profiles with full power rating sink and sourcing capabilities using off-the-shelf components. The battery emulator tracks battery voltage, temperature, and current to provide real-time monitoring of the emulated battery’s state of charge (SOC) and remaining useful life (RUL). The emulator operates in a continuous battery emulation mode or a cyclic mode for repetitive battery testing. The new battery emulator can replace end-product batteries during system development and is realized in two parts, PC Graphical User Interface (GUI) and battery emulator (Hardware). A battery profile-generating algorithm is introduced to accurately reflect the behavior of an actual battery during emulation. All measured data and battery voltage profiles are transferred via Wi-Fi to enable maximal freedom in system deployment. An experimental prototype has been built and tested to verify the battery emulation operation. The prototype handles a maximum input voltage of 150V and an input current of 60A.
用于电源硬件在环应用的可扩展大功率电池仿真器
介绍了一种可扩展的电源半在环(PHiL)电池仿真系统。电池模拟器能够模拟真实的电池电压曲线,具有全额定功率吸收和使用现成组件的采购功能。电池模拟器可以跟踪电池电压、温度和电流,实时监测模拟电池的充电状态(SOC)和剩余使用寿命(RUL)。仿真器以连续电池仿真模式或循环模式运行,用于重复电池测试。新型电池仿真器可在系统开发过程中替代终端产品电池,并由PC图形用户界面(GUI)和电池仿真器(硬件)两部分实现。为了在仿真过程中准确地反映实际电池的行为,提出了一种电池轮廓生成算法。所有测量数据和电池电压分布都通过Wi-Fi传输,以实现系统部署的最大自由度。建立了实验样机并进行了测试,以验证电池仿真操作。该样机最大输入电压为150V,输入电流为60A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
124
审稿时长
4.2 months
期刊介绍: COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信