Estimation and Prediction Dynamics of the Spread of the Coronavirus Infection Using Minimax Approximation Criterion and Polynomial Splines

IF 4.6 2区 数学 Q1 MATHEMATICS, APPLIED
A. Abbasov, Z. F. Mamedov, M. Tvaronavičienė, A. Borodin, I. Vygodchikova, A. Aliev
{"title":"Estimation and Prediction Dynamics of the Spread of the Coronavirus Infection Using Minimax Approximation Criterion and Polynomial Splines","authors":"A. Abbasov, Z. F. Mamedov, M. Tvaronavičienė, A. Borodin, I. Vygodchikova, A. Aliev","doi":"10.30546/1683-6154.21.1.2022.101","DOIUrl":null,"url":null,"abstract":"Presented methodology is on the spread of coronavirus infection dynamics using minimax criterion with the spline approximation. The study is based at authors mathematical method of approximation the dynamic series. The fundamental difference from classical problem of Chebyshev (1854) is the introduction of limiting conditions that allow joining splines in minimax optimality criterion mode. The approximation model is improved as a result of hierarchical procedure, at each stage of which new spline is attached. In the experiments used data on the spread of the coronavirus infection in Russia for period of more than a year with daily registration of cases of infection. So, quadratic approximation function is obtained with a negative coefficient at the highest degree of the variable, indicating a sharp decrease in the spread of coronavirus infection in Russia since mid-January 2021.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30546/1683-6154.21.1.2022.101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Presented methodology is on the spread of coronavirus infection dynamics using minimax criterion with the spline approximation. The study is based at authors mathematical method of approximation the dynamic series. The fundamental difference from classical problem of Chebyshev (1854) is the introduction of limiting conditions that allow joining splines in minimax optimality criterion mode. The approximation model is improved as a result of hierarchical procedure, at each stage of which new spline is attached. In the experiments used data on the spread of the coronavirus infection in Russia for period of more than a year with daily registration of cases of infection. So, quadratic approximation function is obtained with a negative coefficient at the highest degree of the variable, indicating a sharp decrease in the spread of coronavirus infection in Russia since mid-January 2021.
基于极大极小逼近准则和多项式样条的冠状病毒传播动态估计与预测
提出了一种基于样条近似的极大极小准则的冠状病毒传播动力学方法。本文基于作者提出的动态序列近似的数学方法进行了研究。与Chebyshev(1854)的经典问题的根本区别在于引入了允许在极小极大最优准则模式下连接样条的极限条件。采用分层方法对逼近模型进行改进,并在每一阶段附加新的样条。在实验中,使用了俄罗斯一年多来冠状病毒感染传播的数据,每天都有感染病例登记。因此,在变量的最高度处得到负系数的二次逼近函数,表明自2021年1月中旬以来,俄罗斯冠状病毒感染的传播急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
5.00%
发文量
18
审稿时长
6 months
期刊介绍: Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality. The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信