Further studies on the physics potential of an experiment using LHC neutrinos

N. Beni, M. Brucoli, V. Cafaro, T. Camporesi, F. Cerutti, G. Dallavalle, S. Danzeca, A. Roeck, A. D. Rújula, D. Fasanella, V. Giordano, C. Guandalini, A. Ioannisyan, D. Lazic, A. Margotti, S. Meo, F. Navarria, L. Patrizii, T. Rovelli, M. Sabaté-Gilarte, F. S. Galan, P. S. Diaz, G. Sirri, Z. Szillasi, C. Wulz
{"title":"Further studies on the physics potential of an experiment using LHC neutrinos","authors":"N. Beni, M. Brucoli, V. Cafaro, T. Camporesi, F. Cerutti, G. Dallavalle, S. Danzeca, A. Roeck, A. D. Rújula, D. Fasanella, V. Giordano, C. Guandalini, A. Ioannisyan, D. Lazic, A. Margotti, S. Meo, F. Navarria, L. Patrizii, T. Rovelli, M. Sabaté-Gilarte, F. S. Galan, P. S. Diaz, G. Sirri, Z. Szillasi, C. Wulz","doi":"10.1088/1361-6471/aba7ad","DOIUrl":null,"url":null,"abstract":"We discuss an experiment to investigate neutrino physics at the LHC in Run 3, with emphasis on tau flavour. As described in our previous paper [arXiv:1903.06564v1], the detector can be installed in the decommissioned TI18 tunnel, about 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. In that location, the prolongation of the beam Line-of-Sight from Interaction Point IP1 to TI18 traverses about 100 m of rock. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity eta, where neutrino energies can exceed a TeV. This paper focuses on optimizing global features of the experiment, like detector mass and acceptance. Since the neutrino-nucleon interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino events; in the present study it weighs less than 3 tons. The detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < eta < 9.2. In this configuration, the flux at high energies (0.5-1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which about 50% are electron neutrinos and about 5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is studied by means of simulations that embed the LHC optics and found small at high energies. The above studies indicate that with 150 /fb of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current interactions and over 50 tau neutrino charged current events.","PeriodicalId":8429,"journal":{"name":"arXiv: High Energy Physics - Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/aba7ad","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We discuss an experiment to investigate neutrino physics at the LHC in Run 3, with emphasis on tau flavour. As described in our previous paper [arXiv:1903.06564v1], the detector can be installed in the decommissioned TI18 tunnel, about 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. In that location, the prolongation of the beam Line-of-Sight from Interaction Point IP1 to TI18 traverses about 100 m of rock. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity eta, where neutrino energies can exceed a TeV. This paper focuses on optimizing global features of the experiment, like detector mass and acceptance. Since the neutrino-nucleon interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino events; in the present study it weighs less than 3 tons. The detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < eta < 9.2. In this configuration, the flux at high energies (0.5-1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which about 50% are electron neutrinos and about 5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is studied by means of simulations that embed the LHC optics and found small at high energies. The above studies indicate that with 150 /fb of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current interactions and over 50 tau neutrino charged current events.
使用大型强子对撞机中微子的实验的物理势的进一步研究
我们讨论了在运行3的大型强子对撞机上研究中微子物理的一个实验,重点是tau味。正如我们在之前的论文[arXiv:1903.06564v1]中所描述的,探测器可以安装在ATLAS洞穴下游约480 m的退役TI18隧道中,在LHC电弧的第一次弯曲偶极子之后。在那个位置,从相互作用点IP1到TI18的光束视线延伸穿过了大约100米的岩石。探测器拦截了由大型强子对撞机光束在IP1中碰撞产生的强中微子通量,在大伪快度eta下,中微子能量可以超过1 TeV。本文的重点是优化实验的全局特征,如探测器质量和接受度。由于中微子-核子相互作用的横截面几乎随能量线性增长,探测器可以很轻,但仍能收集到相当多的中微子事件样本;在目前的研究中,它的重量不到3吨。探测器的位置远离光束轴,略高于LHC光束从直线段的理想延伸,覆盖7.4 < eta < 9.2。在这种结构中,高能(0.5-1.5 TeV及以上)的通量被直接来自IP1的中微子所控制,主要来自粲数衰变,其中约50%是电子中微子,约5%是tau中微子。通过嵌入大型强子对撞机光学系统的模拟,研究了介子和介子衰变对介子中微子通量的贡献,发现在高能下介子和介子的衰变很小。上述研究表明,在Run 3中,以150 /fb的输出光度,实验可以记录几千个高能中微子带电电流相互作用和50多个tau中微子带电电流事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信