{"title":"Local max-cut in smoothed polynomial time","authors":"Omer Angel, Sébastien Bubeck, Y. Peres, F. Wei","doi":"10.1145/3055399.3055402","DOIUrl":null,"url":null,"abstract":"In 1988, Johnson, Papadimitriou and Yannakakis wrote that \"Practically all the empirical evidence would lead us to conclude that finding locally optimal solutions is much easier than solving NP-hard problems\". Since then the empirical evidence has continued to amass, but formal proofs of this phenomenon have remained elusive. A canonical (and indeed complete) example is the local max-cut problem, for which no polynomial time method is known. In a breakthrough paper, Etscheid and Röglin proved that the smoothed complexity of local max-cut is quasi-polynomial, i.e., if arbitrary bounded weights are randomly perturbed, a local maximum can be found in ϕ nO(logn) steps where ϕ is an upper bound on the random edge weight density. In this paper we prove smoothed polynomial complexity for local max-cut, thus confirming that finding local optima for max-cut is much easier than solving it.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
In 1988, Johnson, Papadimitriou and Yannakakis wrote that "Practically all the empirical evidence would lead us to conclude that finding locally optimal solutions is much easier than solving NP-hard problems". Since then the empirical evidence has continued to amass, but formal proofs of this phenomenon have remained elusive. A canonical (and indeed complete) example is the local max-cut problem, for which no polynomial time method is known. In a breakthrough paper, Etscheid and Röglin proved that the smoothed complexity of local max-cut is quasi-polynomial, i.e., if arbitrary bounded weights are randomly perturbed, a local maximum can be found in ϕ nO(logn) steps where ϕ is an upper bound on the random edge weight density. In this paper we prove smoothed polynomial complexity for local max-cut, thus confirming that finding local optima for max-cut is much easier than solving it.