Local max-cut in smoothed polynomial time

Omer Angel, Sébastien Bubeck, Y. Peres, F. Wei
{"title":"Local max-cut in smoothed polynomial time","authors":"Omer Angel, Sébastien Bubeck, Y. Peres, F. Wei","doi":"10.1145/3055399.3055402","DOIUrl":null,"url":null,"abstract":"In 1988, Johnson, Papadimitriou and Yannakakis wrote that \"Practically all the empirical evidence would lead us to conclude that finding locally optimal solutions is much easier than solving NP-hard problems\". Since then the empirical evidence has continued to amass, but formal proofs of this phenomenon have remained elusive. A canonical (and indeed complete) example is the local max-cut problem, for which no polynomial time method is known. In a breakthrough paper, Etscheid and Röglin proved that the smoothed complexity of local max-cut is quasi-polynomial, i.e., if arbitrary bounded weights are randomly perturbed, a local maximum can be found in ϕ nO(logn) steps where ϕ is an upper bound on the random edge weight density. In this paper we prove smoothed polynomial complexity for local max-cut, thus confirming that finding local optima for max-cut is much easier than solving it.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

In 1988, Johnson, Papadimitriou and Yannakakis wrote that "Practically all the empirical evidence would lead us to conclude that finding locally optimal solutions is much easier than solving NP-hard problems". Since then the empirical evidence has continued to amass, but formal proofs of this phenomenon have remained elusive. A canonical (and indeed complete) example is the local max-cut problem, for which no polynomial time method is known. In a breakthrough paper, Etscheid and Röglin proved that the smoothed complexity of local max-cut is quasi-polynomial, i.e., if arbitrary bounded weights are randomly perturbed, a local maximum can be found in ϕ nO(logn) steps where ϕ is an upper bound on the random edge weight density. In this paper we prove smoothed polynomial complexity for local max-cut, thus confirming that finding local optima for max-cut is much easier than solving it.
在光滑多项式时间内的局部极大割
1988年,Johnson、Papadimitriou和Yannakakis写道:“几乎所有的经验证据都会让我们得出这样的结论:找到局部最优解比解决np困难问题要容易得多。”从那时起,经验证据不断积累,但这一现象的正式证据仍然难以捉摸。一个典型的(实际上是完整的)例子是局部最大切问题,它没有已知的多项式时间方法。在一篇突破性的论文中,Etscheid和Röglin证明了局部最大割的光滑复杂度是拟多项式的,即如果任意有界权随机扰动,则在φ nO(logn)步中可以找到一个局部最大值,其中φ是随机边权密度的上界。本文证明了局部最优解的光滑多项式复杂度,从而证明了局部最优解的寻找要比求解最优解容易得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信