Ali Al Jumah, Abdulkareem Hindawi, Fakhriya Shuaibi, Jasbindra Singh, Mohamed Siyabi, Marya Al Salmi, Safia Hatmi, Anas Mazroui, Khalfan Harthy, N. Azri, Yousuf Sinani, I. Mahrouqi, S. Kindi, F. Saadi, J. Al-Joumaa
{"title":"Optimizing Field Development in South Sultanate of Oman Through Deep Water Disposal Dwd Reclassification","authors":"Ali Al Jumah, Abdulkareem Hindawi, Fakhriya Shuaibi, Jasbindra Singh, Mohamed Siyabi, Marya Al Salmi, Safia Hatmi, Anas Mazroui, Khalfan Harthy, N. Azri, Yousuf Sinani, I. Mahrouqi, S. Kindi, F. Saadi, J. Al-Joumaa","doi":"10.2118/207715-ms","DOIUrl":null,"url":null,"abstract":"\n The South Oman clusters A and B have reclassified their Deep-Water Disposal wells (DWD) into water injection (WI) wells. This is a novel concept where the excess treated water will be used in the plantation of additional reed beds (Cluster A) and the farming of palm trees (Cluster B), as well as act as pressure support for nearby fields. This will help solve multiple issues at different levels namely helping the business achieve its objective of sustained oil production, helping local communities with employment and helping the organization care for the environment by reducing carbon footprints.\n This reclassification covers a huge water volume in Field-A and Field-B where 60,000 m3/day and 40,000 m3/day will be injected respectively in the aquifer. The remaining total excess volume of approx. 200,000m3/d will be used for reed beds and Million Date Palm trees Project.\n The approach followed for the reclassification and routing of water will: Safeguard the field value (oil reserves) by optimum water injectionMaintain the cap-rock integrity by reduced water injection into the aquifer.Reduce GHG intensity by ±50% as a result of (i) reduced power consumption to run the DWD pumps and (ii) the plantation of trees (reed beds and palm trees).Generate ICV (in-country value) opportunities in the area of operations for the local community to use the excess water at surface for various projects.Figure 1DWD Reclassification benefits\n Multiple teams (subsurface. Surface, operations), interfaces and systems have been associated to reflect the re-classification project. This was done through collaboration of different teams and sections (i.e. EC, EDM, SAP, Nibras, OFM, etc). Water injection targets and several KPIs have been incorporated in various dashboards for monitoring and compliance purposes. Figure 2Teams Integration and interfaces\n It offers not only a significant boost to the sustainability of the business, but also pursues PDO's Water Management Strategy to reduce Disposal to Zero by no later than the year 2030\n This paper will discuss how the project was managed, explain the evaluation done to understand the extent of the pressure support in nearby fields from DWD and the required disposal rate to maintain the desired pressures. Hence, reclassifying that part of deep-water disposal volume to water injection (WI) which requires a totally different water flood management system to be built around it.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207715-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The South Oman clusters A and B have reclassified their Deep-Water Disposal wells (DWD) into water injection (WI) wells. This is a novel concept where the excess treated water will be used in the plantation of additional reed beds (Cluster A) and the farming of palm trees (Cluster B), as well as act as pressure support for nearby fields. This will help solve multiple issues at different levels namely helping the business achieve its objective of sustained oil production, helping local communities with employment and helping the organization care for the environment by reducing carbon footprints.
This reclassification covers a huge water volume in Field-A and Field-B where 60,000 m3/day and 40,000 m3/day will be injected respectively in the aquifer. The remaining total excess volume of approx. 200,000m3/d will be used for reed beds and Million Date Palm trees Project.
The approach followed for the reclassification and routing of water will: Safeguard the field value (oil reserves) by optimum water injectionMaintain the cap-rock integrity by reduced water injection into the aquifer.Reduce GHG intensity by ±50% as a result of (i) reduced power consumption to run the DWD pumps and (ii) the plantation of trees (reed beds and palm trees).Generate ICV (in-country value) opportunities in the area of operations for the local community to use the excess water at surface for various projects.Figure 1DWD Reclassification benefits
Multiple teams (subsurface. Surface, operations), interfaces and systems have been associated to reflect the re-classification project. This was done through collaboration of different teams and sections (i.e. EC, EDM, SAP, Nibras, OFM, etc). Water injection targets and several KPIs have been incorporated in various dashboards for monitoring and compliance purposes. Figure 2Teams Integration and interfaces
It offers not only a significant boost to the sustainability of the business, but also pursues PDO's Water Management Strategy to reduce Disposal to Zero by no later than the year 2030
This paper will discuss how the project was managed, explain the evaluation done to understand the extent of the pressure support in nearby fields from DWD and the required disposal rate to maintain the desired pressures. Hence, reclassifying that part of deep-water disposal volume to water injection (WI) which requires a totally different water flood management system to be built around it.