{"title":"Solving Unequal-Area Facility Layout Problems with Orbits in Fully Automatic System","authors":"Xin-gang Hao, Mingyao Qi","doi":"10.1109/COASE.2018.8560565","DOIUrl":null,"url":null,"abstract":"The facility layout problem (FLP) has attracted much attention with abundant research on it. This paper studies the facility layout problem under a new industrial background. As increasing factories produce in full-automation, like chip production companies, which need orbits transmit materials, therefore, we consider a layout scheme that the facility is divided into several columns by vertical orbits, and in each column, there are several horizontal orbits with machines along both sides of them. We consider heterogeneous unequal-area machines, each type with more than one, to minimize the total theoretical material transmission distances. This study proposes a mixed integer linear programming (MILP) model to determine the locations of orbits, layouts of facilities as well as the material transmission routes which could lead to a global optimal solution. Through designed experiments, the results show how the parameter setting can affect the performance of the solution.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"47 1","pages":"1183-1188"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The facility layout problem (FLP) has attracted much attention with abundant research on it. This paper studies the facility layout problem under a new industrial background. As increasing factories produce in full-automation, like chip production companies, which need orbits transmit materials, therefore, we consider a layout scheme that the facility is divided into several columns by vertical orbits, and in each column, there are several horizontal orbits with machines along both sides of them. We consider heterogeneous unequal-area machines, each type with more than one, to minimize the total theoretical material transmission distances. This study proposes a mixed integer linear programming (MILP) model to determine the locations of orbits, layouts of facilities as well as the material transmission routes which could lead to a global optimal solution. Through designed experiments, the results show how the parameter setting can affect the performance of the solution.