On uniqueness for Franklin series with a convergent subsequence of partial sums

IF 0.8 4区 数学 Q2 MATHEMATICS
G. Gevorkyan
{"title":"On uniqueness for Franklin series with a convergent subsequence of partial sums","authors":"G. Gevorkyan","doi":"10.4213/sm9741e","DOIUrl":null,"url":null,"abstract":"We show that if the partial sums $S_{n_i}(x)=\\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\\sum_{k=0}^{\\infty}a_kf_k(x)$, where $\\sup_i{n_i}/(n_{i-1})<\\infty$, converge in measure to a bounded function $f$ and $\\sup_i|S_{n_i}(x)|<\\infty$ for $ x\\not\\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"83 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/sm9741e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$, where $\sup_i{n_i}/(n_{i-1})<\infty$, converge in measure to a bounded function $f$ and $\sup_i|S_{n_i}(x)|<\infty$ for $ x\not\in B$, where $B$ is some countable set, then this series is the Fourier-Franklin series of $f$. Bibliography: 24 titles.
部分和收敛子序列的Franklin级数的唯一性
我们证明了如果Franklin级数$\sum_{k=0}^{\infty}a_kf_k(x)$(其中$\sup_i{n_i}/(n_{i-1})<\infty$)的部分和$S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$在测度上收敛于有界函数$f$和$\sup_i|S_{n_i}(x)|<\infty$(对于$ x\not\in B$,其中$B$是可数集合),那么这个级数就是$f$的傅里叶-富兰克林级数。参考书目:24篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sbornik Mathematics
Sbornik Mathematics 数学-数学
CiteScore
1.40
自引率
12.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in: Mathematical analysis Ordinary differential equations Partial differential equations Mathematical physics Geometry Algebra Functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信