Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates

IF 1.9 3区 数学 Q2 Mathematics
Aaron Brunk, Egger Herbert, Oliver Habrich, M. Lukácová-Medvidová
{"title":"Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates","authors":"Aaron Brunk, Egger Herbert, Oliver Habrich, M. Lukácová-Medvidová","doi":"10.1051/m2an/2023017","DOIUrl":null,"url":null,"abstract":"The stability of solutions to the Cahn-Hilliard equation with concentration dependent mobility with respect to perturbations is studied by means of relative energy estimates.\n\nAs a by-product of this analysis, a weak-strong uniqueness principle is derived on the continuous level under realistic regularity assumptions on strong solutions.\n\nThe stability estimates are further inherited almost verbatim by appropriate Galerkin approximations in space and time. This allows to derive sharp bounds for the discretization error in terms of certain projection errors and to establish order-optimal a-priori error estimates for semi- and fully discrete approximation schemes. \n\nNumerical tests are presented for illustration of the theoretical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The stability of solutions to the Cahn-Hilliard equation with concentration dependent mobility with respect to perturbations is studied by means of relative energy estimates. As a by-product of this analysis, a weak-strong uniqueness principle is derived on the continuous level under realistic regularity assumptions on strong solutions. The stability estimates are further inherited almost verbatim by appropriate Galerkin approximations in space and time. This allows to derive sharp bounds for the discretization error in terms of certain projection errors and to establish order-optimal a-priori error estimates for semi- and fully discrete approximation schemes.  Numerical tests are presented for illustration of the theoretical results.
基于相对能量估计的Cahn-Hilliard系统稳定性及离散误差分析
用相对能量估计的方法研究了具有浓度依赖迁移率的Cahn-Hilliard方程解对扰动的稳定性。作为该分析的副产品,在强解的现实正则性假设下,在连续水平上导出了弱-强唯一性原理。通过适当的空间和时间上的伽辽金近似,进一步几乎逐字继承了稳定性估计。这允许在某些投影误差方面推导离散误差的明确界限,并为半和完全离散近似方案建立最优顺序先验误差估计。为了说明理论结果,给出了数值试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信