Contextual isomorphisms

P. Levy
{"title":"Contextual isomorphisms","authors":"P. Levy","doi":"10.1145/3009837.3009898","DOIUrl":null,"url":null,"abstract":"What is the right notion of \"isomorphism\" between types, in a simple type theory? The traditional answer is: a pair of terms that are inverse up to a specified congruence. We firstly argue that, in the presence of effects, this answer is too liberal and needs to be restricted, using Führmann's notion of thunkability in the case of value types (as in call-by-value), or using Munch-Maccagnoni's notion of linearity in the case of computation types (as in call-by-name). Yet that leaves us with different notions of isomorphism for different kinds of type. This situation is resolved by means of a new notion of \"contextual\" isomorphism (or morphism), analogous at the level of types to contextual equivalence of terms. A contextual morphism is a way of replacing one type with the other wherever it may occur in a judgement, in a way that is preserved by the action of any term with holes. For types of pure λ-calculus, we show that a contextual morphism corresponds to a traditional isomorphism. For value types, a contextual morphism corresponds to a thunkable isomorphism, and for computation types, to a linear isomorphism.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

What is the right notion of "isomorphism" between types, in a simple type theory? The traditional answer is: a pair of terms that are inverse up to a specified congruence. We firstly argue that, in the presence of effects, this answer is too liberal and needs to be restricted, using Führmann's notion of thunkability in the case of value types (as in call-by-value), or using Munch-Maccagnoni's notion of linearity in the case of computation types (as in call-by-name). Yet that leaves us with different notions of isomorphism for different kinds of type. This situation is resolved by means of a new notion of "contextual" isomorphism (or morphism), analogous at the level of types to contextual equivalence of terms. A contextual morphism is a way of replacing one type with the other wherever it may occur in a judgement, in a way that is preserved by the action of any term with holes. For types of pure λ-calculus, we show that a contextual morphism corresponds to a traditional isomorphism. For value types, a contextual morphism corresponds to a thunkable isomorphism, and for computation types, to a linear isomorphism.
上下文同构
在简单的类型理论中,类型之间的“同构”的正确概念是什么?传统的答案是:一对逆的项直到一个指定的同余。我们首先认为,在存在效应的情况下,这个答案过于自由,需要加以限制,在值类型的情况下使用赫曼的可思性概念(如按值调用),或在计算类型的情况下使用Munch-Maccagnoni的线性概念(如按名称调用)。然而这给我们留下了不同类型的同构概念。这种情况可以通过“上下文”同构(或形态)的新概念来解决,它在类型级别类似于术语的上下文等价。上下文态射是在判断中可能出现的任何地方用另一种类型替换一种类型的一种方式,这种方式通过任何有洞的术语的作用来保存。对于纯λ-演算的类型,我们证明了上下文态射对应于传统同构。对于值类型,上下文态射对应于可分同构,对于计算类型,对应于线性同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信