Evaluation of Energy Production using Parabolic-Dish Solar Collector: A Case Study of Iraq

IF 1.1 Q4 ENGINEERING, MECHANICAL
Itimad D. J. Azzawi
{"title":"Evaluation of Energy Production using Parabolic-Dish Solar Collector: A Case Study of Iraq","authors":"Itimad D. J. Azzawi","doi":"10.24191/jmeche.v20i2.22057","DOIUrl":null,"url":null,"abstract":"The parabolic dish reflector solar collector is one of the significant and most efficient steam-producing solar concentrating systems in thermoelectric power plants and, furthermore, it's considered to be environmentally friendly (renewable energy). Iraq has vast land for installing solar collectors to generate steam and use for thermal power plants. However, no such application/power plant has yet been built. Therefore, the proposed study investigates opportunities for using PDR solar collectors, including all advantages and challenges. To implement and estimate the productivity and efficiency of the PDR in (Diyala City / Iraq), a PDR solar collector with a total area of 0.708 m2 (including the glass pieces used as a reflective surface) was designed and fabricated. These glass pieces have been utilized to increase the reflection of solar rays by 80% when compared to a traditional case/setup. Two different systems (open and closed) were considered to investigate the performance of thermal power . The results show that the absorption temperature was increased from 34.6 to 95 °C. On the other hand, the coefficient of heat loss by convection increases by about (795.5 W). In addition, it was pointed out that the coefficient of total heat loss over time was increased by about 25 to 41% (closed and open systems). Furthermore, the experimental findings clearly demonstrate the usefulness of PDR solar heaters in Iraq. Hence, its confidently believed that this research will be useful in the future for this type of thermal power plant.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"82 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The parabolic dish reflector solar collector is one of the significant and most efficient steam-producing solar concentrating systems in thermoelectric power plants and, furthermore, it's considered to be environmentally friendly (renewable energy). Iraq has vast land for installing solar collectors to generate steam and use for thermal power plants. However, no such application/power plant has yet been built. Therefore, the proposed study investigates opportunities for using PDR solar collectors, including all advantages and challenges. To implement and estimate the productivity and efficiency of the PDR in (Diyala City / Iraq), a PDR solar collector with a total area of 0.708 m2 (including the glass pieces used as a reflective surface) was designed and fabricated. These glass pieces have been utilized to increase the reflection of solar rays by 80% when compared to a traditional case/setup. Two different systems (open and closed) were considered to investigate the performance of thermal power . The results show that the absorption temperature was increased from 34.6 to 95 °C. On the other hand, the coefficient of heat loss by convection increases by about (795.5 W). In addition, it was pointed out that the coefficient of total heat loss over time was increased by about 25 to 41% (closed and open systems). Furthermore, the experimental findings clearly demonstrate the usefulness of PDR solar heaters in Iraq. Hence, its confidently believed that this research will be useful in the future for this type of thermal power plant.
利用抛物面式太阳能集热器发电的评价:以伊拉克为例
抛物面反射式太阳能集热器是热电厂中最重要和最有效的蒸汽产生太阳能集中系统之一,此外,它被认为是环保的(可再生能源)。伊拉克拥有广阔的土地,可以安装太阳能集热器,产生蒸汽,用于火力发电厂。然而,目前还没有这样的应用/发电厂建成。因此,提出的研究调查了使用PDR太阳能集热器的机会,包括所有的优势和挑战。为了在(迪亚拉市/伊拉克)实施和评估PDR的生产力和效率,设计并制造了一个总面积为0.708 m2的PDR太阳能集热器(包括用作反射表面的玻璃片)。与传统的案例/设置相比,这些玻璃片被用来增加80%的太阳光线反射。考虑了两种不同的系统(开式和闭式)来研究火电的性能。结果表明,吸收温度由34.6℃提高到95℃。另一方面,对流热损失系数增加了约795.5 W。此外,总热损失系数随时间增加了约25 ~ 41%(封闭和开放系统)。此外,实验结果清楚地表明PDR太阳能加热器在伊拉克的有用性。因此,我们有信心地相信,这项研究将在未来对这种类型的火力发电厂有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信