Stability of asymptotic behaviour within polarized T2-symmetric vacuum solutions with cosmological constant

E. Ames, F. Beyer, J. Isenberg, T. Oliynyk
{"title":"Stability of asymptotic behaviour within polarized T2-symmetric vacuum solutions with cosmological constant","authors":"E. Ames, F. Beyer, J. Isenberg, T. Oliynyk","doi":"10.1098/rsta.2021.0173","DOIUrl":null,"url":null,"abstract":"We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T2-symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ. This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T2-symmetric vacuum spacetimes. Ann. Henri Poincaré. (doi:10.1007/s00023-021-01142-0)), which focus on the Λ=0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ=0, the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T2-symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T2-symmetric vacuum spacetimes. Ann. Henri Poincaré. (doi:10.1007/s00023-021-01142-0)) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime. Preprint. (http://arxiv.org/abs/2012.05888)). Our results establish that the areal time coordinate takes all values in (0,T0] for some T0>0, for certain families of polarized T2-symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T2-symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ. This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T2-symmetric vacuum spacetimes. Ann. Henri Poincaré. (doi:10.1007/s00023-021-01142-0)), which focus on the Λ=0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ=0, the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T2-symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T2-symmetric vacuum spacetimes. Ann. Henri Poincaré. (doi:10.1007/s00023-021-01142-0)) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime. Preprint. (http://arxiv.org/abs/2012.05888)). Our results establish that the areal time coordinate takes all values in (0,T0] for some T0>0, for certain families of polarized T2-symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’.
具有宇宙学常数的偏振t2对称真空解的渐近行为稳定性
我们证明了具有任意宇宙常数Λ的真空爱因斯坦方程的偏振t2对称解类中Kasner解的子族在收缩时间方向上的扰动的渐近行为的非线性稳定性。这一稳定性结果推广了Ames et al.(2022)中证明的结果。安。亨利·庞加莱。(doi:10.1007/s00023-021-01142-0)),其重点是Λ=0的情况,并且在那篇文章中,证明依赖于实时叶化和Fuchsian技术。即使对于Λ=0,这里建立的结果也适用于极化t2对称真空解族中Kasner解的更广泛的微扰,而不是Ames E等人(2022)中考虑的。安。亨利·庞加莱。(doi:10.1007/s00023-021-01142-0))和Fournodavlos G et al.(2020爱因斯坦方程的稳定大爆炸形成:完整的亚临界状态。预印本。(http://arxiv.org/abs/2012.05888))。我们的结果证明,对于某些具有宇宙学常数的偏振t2对称解族,在某些T0>0的情况下,实时坐标取(0,T0)内的所有值。本文是主题问题“数学宇宙学的未来,第一卷”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信