Contribution Maximization in Probabilistic Datalog

T. Milo, Y. Moskovitch, Brit Youngmann
{"title":"Contribution Maximization in Probabilistic Datalog","authors":"T. Milo, Y. Moskovitch, Brit Youngmann","doi":"10.1109/ICDE48307.2020.00076","DOIUrl":null,"url":null,"abstract":"The use of probabilistic datalog programs has been recently advocated for applications that involve recursive computation and uncertainty. While using such programs allows for a flexible knowledge derivation, it makes the analysis of query results a challenging task. Particularly, given a set O of output tuples and a number k, one would like to understand which k-size subset of the input tuples have contributed the most to the derivation of O. This is useful for multiple tasks, such as identifying the critical sources of errors and understanding surprising results. Previous works have mainly focused on the quantification of tuples contribution to a query result in non-recursive SQL queries, very often disregarding probabilistic inference. To quantify the contribution in probabilistic datalog programs, one must account for the recursive relations between input and output data, and the uncertainty. To this end, we formalize the Contribution Maximization (CM) problem. We then reduce CM to the well-studied Influence Maximization (IM) problem, showing that we can harness techniques developed for IM to our setting. However, we show that such naïve adoption results in poor performance. To overcome this, we propose an optimized algorithm which injects a refined variant of the classic Magic Sets technique, integrated with a sampling method, into IM algorithms, achieving a significant saving of space and execution time. Our experiments demonstrate the effectiveness of our algorithm, even where the naïve approach is infeasible.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"72 1","pages":"817-828"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of probabilistic datalog programs has been recently advocated for applications that involve recursive computation and uncertainty. While using such programs allows for a flexible knowledge derivation, it makes the analysis of query results a challenging task. Particularly, given a set O of output tuples and a number k, one would like to understand which k-size subset of the input tuples have contributed the most to the derivation of O. This is useful for multiple tasks, such as identifying the critical sources of errors and understanding surprising results. Previous works have mainly focused on the quantification of tuples contribution to a query result in non-recursive SQL queries, very often disregarding probabilistic inference. To quantify the contribution in probabilistic datalog programs, one must account for the recursive relations between input and output data, and the uncertainty. To this end, we formalize the Contribution Maximization (CM) problem. We then reduce CM to the well-studied Influence Maximization (IM) problem, showing that we can harness techniques developed for IM to our setting. However, we show that such naïve adoption results in poor performance. To overcome this, we propose an optimized algorithm which injects a refined variant of the classic Magic Sets technique, integrated with a sampling method, into IM algorithms, achieving a significant saving of space and execution time. Our experiments demonstrate the effectiveness of our algorithm, even where the naïve approach is infeasible.
概率数据中的贡献最大化
在涉及递归计算和不确定性的应用中,最近提倡使用概率数据程序。虽然使用这样的程序允许灵活的知识派生,但它使查询结果的分析成为一项具有挑战性的任务。特别是,给定一组O个输出元组和一个数字k,人们想要了解输入元组的哪个k大小的子集对O的推导贡献最大。这对于多个任务很有用,例如识别错误的关键来源和理解令人惊讶的结果。以前的工作主要集中在非递归SQL查询中元组对查询结果的贡献的量化上,通常忽略了概率推理。为了量化概率数据程序中的贡献,必须考虑输入和输出数据之间的递归关系以及不确定性。为此,我们将贡献最大化(CM)问题形式化。然后,我们将CM简化为经过充分研究的影响最大化(IM)问题,表明我们可以利用为IM开发的技术来实现我们的设置。然而,我们表明这样的naïve采用导致了较差的性能。为了克服这个问题,我们提出了一种优化算法,该算法将经典Magic Sets技术的改进变体与采样方法集成到IM算法中,从而大大节省了空间和执行时间。我们的实验证明了我们的算法的有效性,即使naïve方法是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信