Two general series identities involving modified Bessel functions and a class of arithmetical functions

Pub Date : 2022-04-21 DOI:10.4153/S0008414X22000530
B. Berndt, A. Dixit, Rajat Gupta, A. Zaharescu
{"title":"Two general series identities involving modified Bessel functions and a class of arithmetical functions","authors":"B. Berndt, A. Dixit, Rajat Gupta, A. Zaharescu","doi":"10.4153/S0008414X22000530","DOIUrl":null,"url":null,"abstract":"Abstract We consider two sequences \n$a(n)$\n and \n$b(n)$\n , \n$1\\leq n<\\infty $\n , generated by Dirichlet series \n$$ \\begin{align*}\\sum_{n=1}^{\\infty}\\frac{a(n)}{\\lambda_n^{s}}\\qquad\\text{and}\\qquad \\sum_{n=1}^{\\infty}\\frac{b(n)}{\\mu_n^{s}},\\end{align*} $$\n satisfying a familiar functional equation involving the gamma function \n$\\Gamma (s)$\n . Two general identities are established. The first involves the modified Bessel function \n$K_{\\mu }(z)$\n , and can be thought of as a ‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are \n$K_{\\mu }(z)$\n , the Bessel functions of imaginary argument \n$I_{\\mu }(z)$\n , and ordinary hypergeometric functions \n${_2F_1}(a,b;c;z)$\n . Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan’s arithmetical function \n$\\tau (n)$\n , the number of representations of n as a sum of k squares \n$r_k(n)$\n , and primitive Dirichlet characters \n$\\chi (n)$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X22000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We consider two sequences $a(n)$ and $b(n)$ , $1\leq n<\infty $ , generated by Dirichlet series $$ \begin{align*}\sum_{n=1}^{\infty}\frac{a(n)}{\lambda_n^{s}}\qquad\text{and}\qquad \sum_{n=1}^{\infty}\frac{b(n)}{\mu_n^{s}},\end{align*} $$ satisfying a familiar functional equation involving the gamma function $\Gamma (s)$ . Two general identities are established. The first involves the modified Bessel function $K_{\mu }(z)$ , and can be thought of as a ‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are $K_{\mu }(z)$ , the Bessel functions of imaginary argument $I_{\mu }(z)$ , and ordinary hypergeometric functions ${_2F_1}(a,b;c;z)$ . Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan’s arithmetical function $\tau (n)$ , the number of representations of n as a sum of k squares $r_k(n)$ , and primitive Dirichlet characters $\chi (n)$ .
分享
查看原文
涉及修正贝塞尔函数和一类算术函数的两个一般级数恒等式
摘要考虑由Dirichlet级数$$ \begin{align*}\sum_{n=1}^{\infty}\frac{a(n)}{\lambda_n^{s}}\qquad\text{and}\qquad \sum_{n=1}^{\infty}\frac{b(n)}{\mu_n^{s}},\end{align*} $$生成的两个序列$a(n)$和$b(n)$, $1\leq n<\infty $,满足一个熟悉的包含gamma函数$\Gamma (s)$的泛函方程。建立了两个一般的恒等式。第一个涉及修改的贝塞尔函数$K_{\mu }(z)$,可以被认为是一个“模”或“θ”关系,其中出现了修改的贝塞尔函数,而不是指数函数。在第二个恒等式中出现的有$K_{\mu }(z)$、虚参的贝塞尔函数$I_{\mu }(z)$和一般的超几何函数${_2F_1}(a,b;c;z)$。虽然在文献中出现了一些特殊的情况,但一般的身份是新的。在恒等式中出现的算术函数包括拉马努金的算术函数$\tau (n)$,表示n为k平方和的个数$r_k(n)$,以及原始狄利克雷字符$\chi (n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信