{"title":"Existence and multiplicity results for the fractional p-Laplacian equation with Hardy-Sobolev exponents","authors":"Gai ia Ning, Zhiyong Wang, Jihui Zhang","doi":"10.7153/dea-2018-10-06","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the following fractional p -Laplacian problem ⎨⎩ (−Δ)pu = λ |u|p−2u+ |u| ps,α−2u |x|α in Ω, u = 0 on ∂Ω, where Ω is a bounded domain containing the origin in RN with Lipschitz boundary, p ∈ (1,∞) , s ∈ (0,1) , 0 α < ps < N and p∗s,α = (N −α)p/(N − ps) is the fractional Hardy-Sobolev exponent. We prove the existence, multiplicity and bifurcation results for the above problem. Our results extend some results in the literature for the fractional p -Laplacian problem involving critical Sobolev exponent and the p -Laplacian problem involving Hardy-Sobolev exponents.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"26 1","pages":"87-114"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2018-10-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the following fractional p -Laplacian problem ⎨⎩ (−Δ)pu = λ |u|p−2u+ |u| ps,α−2u |x|α in Ω, u = 0 on ∂Ω, where Ω is a bounded domain containing the origin in RN with Lipschitz boundary, p ∈ (1,∞) , s ∈ (0,1) , 0 α < ps < N and p∗s,α = (N −α)p/(N − ps) is the fractional Hardy-Sobolev exponent. We prove the existence, multiplicity and bifurcation results for the above problem. Our results extend some results in the literature for the fractional p -Laplacian problem involving critical Sobolev exponent and the p -Laplacian problem involving Hardy-Sobolev exponents.