{"title":"A kuratowski-type theorem for planarity of partially embedded graphs","authors":"Vít Jelínek, Jan Kratochvíl, Ignaz Rutter","doi":"10.1145/1998196.1998214","DOIUrl":null,"url":null,"abstract":"A partially embedded graph (or PEG) is a triple (G,H,EH), where G is a graph, H is a subgraph of G, and EH is a planar embedding of H. We say that a PEG (G,H,EH) is planar if the graph G has a planar embedding that extends the embedding EH.\n We introduce a containment relation of PEGs analogous to graph minor containment, and characterize the minimal non-planar PEGs with respect to this relation. We show that all the minimal non-planar PEGs except for finitely many belong to a single easily recognizable and explicitly described infinite family. We also describe a more complicated containment relation which only has a finite number of minimal non-planar PEGs.\n Furthermore, by extending an existing planarity test for PEGs, we obtain a polynomial-time algorithm which, for a given PEG, either produces a planar embedding or identifies a minimal obstruction.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"56 1","pages":"466-492"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998196.1998214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
A partially embedded graph (or PEG) is a triple (G,H,EH), where G is a graph, H is a subgraph of G, and EH is a planar embedding of H. We say that a PEG (G,H,EH) is planar if the graph G has a planar embedding that extends the embedding EH.
We introduce a containment relation of PEGs analogous to graph minor containment, and characterize the minimal non-planar PEGs with respect to this relation. We show that all the minimal non-planar PEGs except for finitely many belong to a single easily recognizable and explicitly described infinite family. We also describe a more complicated containment relation which only has a finite number of minimal non-planar PEGs.
Furthermore, by extending an existing planarity test for PEGs, we obtain a polynomial-time algorithm which, for a given PEG, either produces a planar embedding or identifies a minimal obstruction.