A kuratowski-type theorem for planarity of partially embedded graphs

Vít Jelínek, Jan Kratochvíl, Ignaz Rutter
{"title":"A kuratowski-type theorem for planarity of partially embedded graphs","authors":"Vít Jelínek, Jan Kratochvíl, Ignaz Rutter","doi":"10.1145/1998196.1998214","DOIUrl":null,"url":null,"abstract":"A partially embedded graph (or PEG) is a triple (G,H,EH), where G is a graph, H is a subgraph of G, and EH is a planar embedding of H. We say that a PEG (G,H,EH) is planar if the graph G has a planar embedding that extends the embedding EH.\n We introduce a containment relation of PEGs analogous to graph minor containment, and characterize the minimal non-planar PEGs with respect to this relation. We show that all the minimal non-planar PEGs except for finitely many belong to a single easily recognizable and explicitly described infinite family. We also describe a more complicated containment relation which only has a finite number of minimal non-planar PEGs.\n Furthermore, by extending an existing planarity test for PEGs, we obtain a polynomial-time algorithm which, for a given PEG, either produces a planar embedding or identifies a minimal obstruction.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"56 1","pages":"466-492"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998196.1998214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

A partially embedded graph (or PEG) is a triple (G,H,EH), where G is a graph, H is a subgraph of G, and EH is a planar embedding of H. We say that a PEG (G,H,EH) is planar if the graph G has a planar embedding that extends the embedding EH. We introduce a containment relation of PEGs analogous to graph minor containment, and characterize the minimal non-planar PEGs with respect to this relation. We show that all the minimal non-planar PEGs except for finitely many belong to a single easily recognizable and explicitly described infinite family. We also describe a more complicated containment relation which only has a finite number of minimal non-planar PEGs. Furthermore, by extending an existing planarity test for PEGs, we obtain a polynomial-time algorithm which, for a given PEG, either produces a planar embedding or identifies a minimal obstruction.
部分嵌入图平面性的一个kuratowski型定理
部分嵌入图(或PEG)是一个三重(G,H,EH),其中G是一个图,H是G的子图,EH是H的一个平面嵌入,如果图G具有扩展嵌入EH的平面嵌入,则称PEG (G,H,EH)是平面的。我们引入了一种类似于图小包涵的聚乙二醇的包涵关系,并利用这种包涵关系刻画了极小非平面聚乙二醇。我们证明了所有最小的非平面peg,除了有限多个外,都属于一个易于识别和明确描述的无限族。我们还描述了一个更复杂的包含关系,它只有有限个最小非平面聚乙二醇。此外,通过扩展现有的聚乙二醇平面性检验,我们得到了一个多项式时间算法,对于给定的聚乙二醇,该算法要么产生平面嵌入,要么识别最小障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信