Banach–Mazur stability of von Neumann algebras

IF 0.5 3区 数学 Q3 MATHEMATICS
J. Roydor
{"title":"Banach–Mazur stability of von Neumann algebras","authors":"J. Roydor","doi":"10.1142/s1793525321500151","DOIUrl":null,"url":null,"abstract":"We initiate the study of perturbation of von Neumann algebras relatively to the Banach–Mazur distance. We first prove that the type decomposition is continuous, i.e. if two von Neumann algebras are close, then their respective summands of each type are close. We then prove that, under some vanishing conditions on its Hochschild cohomology groups, a von Neumann algebra is Banach–Mazur stable, i.e. any von Neumann algebra which is close enough is actually Jordan ∗-isomorphic. These vanishing conditions are possibly empty.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"8 1","pages":"1-26"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We initiate the study of perturbation of von Neumann algebras relatively to the Banach–Mazur distance. We first prove that the type decomposition is continuous, i.e. if two von Neumann algebras are close, then their respective summands of each type are close. We then prove that, under some vanishing conditions on its Hochschild cohomology groups, a von Neumann algebra is Banach–Mazur stable, i.e. any von Neumann algebra which is close enough is actually Jordan ∗-isomorphic. These vanishing conditions are possibly empty.
von Neumann代数的Banach-Mazur稳定性
我们开始研究相对于Banach-Mazur距离的von Neumann代数的摄动。我们首先证明了类型分解是连续的,即如果两个von Neumann代数是接近的,则它们各自的和是接近的。然后证明了在其Hochschild上同调群上的某些消失条件下,von Neumann代数是Banach-Mazur稳定的,即任何足够接近的von Neumann代数实际上是Jordan * -同构的。这些消失的条件可能是空的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信