Influence of Transformer Structures on the Frequency Response Analysis: A Laboratory Case Study

R. S. Ferreira, A. Sengupta, P. Picher, I. Fofana, H. Ezzaidi
{"title":"Influence of Transformer Structures on the Frequency Response Analysis: A Laboratory Case Study","authors":"R. S. Ferreira, A. Sengupta, P. Picher, I. Fofana, H. Ezzaidi","doi":"10.1109/CEIDP50766.2021.9705354","DOIUrl":null,"url":null,"abstract":"Frequency response analysis (FRA) is used in the electrical industry for condition assessment of power transformers. The method is sensitive to even slight variations occurring in the active parts of transformers. Over the years, FRA has demonstrated its good capacity for detection of mechanical and electrical failure modes This paper explores different measurements taken on a laboratory transformer model where the influence of cylindrical grounded structures (simulating a tank and a core) is investigated. The cylindrical structures were added in order to study their impacts on the frequency response with a specific focus on the inductance and capacitance changes. The core and tank influences on the frequency response measurements are explained by shunt capacitances variation in both cases causing similar changes to the traces. Besides, radially induced currents in the tank made of magnetic steel affected the main inductance of the winding causing a shift of the first anti-resonance frequency. Such radially induced currents were prevented by the design of the simulated core made of aluminum strips. The results indicated that the transformer structure has a significant influence on the frequency response, related to changes in the main inductance and capacitances of the equivalent transformer circuit model. These academic experiments help contributing to a better understanding and further support of transformer FRA trace interpretations.","PeriodicalId":6837,"journal":{"name":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"20 1","pages":"155-158"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP50766.2021.9705354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency response analysis (FRA) is used in the electrical industry for condition assessment of power transformers. The method is sensitive to even slight variations occurring in the active parts of transformers. Over the years, FRA has demonstrated its good capacity for detection of mechanical and electrical failure modes This paper explores different measurements taken on a laboratory transformer model where the influence of cylindrical grounded structures (simulating a tank and a core) is investigated. The cylindrical structures were added in order to study their impacts on the frequency response with a specific focus on the inductance and capacitance changes. The core and tank influences on the frequency response measurements are explained by shunt capacitances variation in both cases causing similar changes to the traces. Besides, radially induced currents in the tank made of magnetic steel affected the main inductance of the winding causing a shift of the first anti-resonance frequency. Such radially induced currents were prevented by the design of the simulated core made of aluminum strips. The results indicated that the transformer structure has a significant influence on the frequency response, related to changes in the main inductance and capacitances of the equivalent transformer circuit model. These academic experiments help contributing to a better understanding and further support of transformer FRA trace interpretations.
变压器结构对频率响应分析的影响:一个实验室案例研究
频率响应分析(FRA)在电力工业中用于电力变压器的状态评估。该方法对变压器有功部分发生的微小变化也很敏感。多年来,FRA已经证明了其良好的机械和电气故障模式检测能力。本文探讨了在实验室变压器模型上采取的不同测量方法,其中研究了圆柱形接地结构(模拟水箱和铁芯)的影响。为了研究圆柱结构对频率响应的影响,重点研究了电感和电容的变化。磁芯和槽对频率响应测量的影响可以用两种情况下并联电容的变化来解释,这两种情况下并联电容的变化对走线造成了类似的变化。此外,磁钢槽内的径向感应电流影响了绕组的主电感,导致了第一反谐振频率的偏移。这种径向感应电流的设计是由铝带制成的模拟铁芯。结果表明,变压器结构对频率响应有显著影响,这与等效变压器电路模型主电感和主电容的变化有关。这些学术实验有助于更好地理解和进一步支持变压器FRA轨迹解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信