Enabling always-available input with muscle-computer interfaces

T. S. Saponas, Desney S. Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, J. Landay
{"title":"Enabling always-available input with muscle-computer interfaces","authors":"T. S. Saponas, Desney S. Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, J. Landay","doi":"10.1145/1622176.1622208","DOIUrl":null,"url":null,"abstract":"Previous work has demonstrated the viability of applying offline analysis to interpret forearm electromyography (EMG) and classify finger gestures on a physical surface. We extend those results to bring us closer to using muscle-computer interfaces for always-available input in real-world applications. We leverage existing taxonomies of natural human grips to develop a gesture set covering interaction in free space even when hands are busy with other objects. We present a system that classifies these gestures in real-time and we introduce a bi-manual paradigm that enables use in interactive systems. We report experimental results demonstrating four-finger classification accuracies averaging 79% for pinching, 85% while holding a travel mug, and 88% when carrying a weighted bag. We further show generalizability across different arm postures and explore the tradeoffs of providing real-time visual feedback.","PeriodicalId":93361,"journal":{"name":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","volume":"22 1","pages":"167-176"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1622176.1622208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 325

Abstract

Previous work has demonstrated the viability of applying offline analysis to interpret forearm electromyography (EMG) and classify finger gestures on a physical surface. We extend those results to bring us closer to using muscle-computer interfaces for always-available input in real-world applications. We leverage existing taxonomies of natural human grips to develop a gesture set covering interaction in free space even when hands are busy with other objects. We present a system that classifies these gestures in real-time and we introduce a bi-manual paradigm that enables use in interactive systems. We report experimental results demonstrating four-finger classification accuracies averaging 79% for pinching, 85% while holding a travel mug, and 88% when carrying a weighted bag. We further show generalizability across different arm postures and explore the tradeoffs of providing real-time visual feedback.
通过肌肉计算机接口实现始终可用的输入
先前的工作已经证明了应用离线分析来解释前臂肌电图(EMG)和在物理表面上对手指手势进行分类的可行性。我们扩展了这些结果,使我们更接近于在现实应用中使用肌肉计算机接口来提供始终可用的输入。我们利用现有的人类自然握力分类来开发一个手势集,涵盖自由空间中的交互,即使手忙于其他物体。我们提出了一个实时对这些手势进行分类的系统,并引入了一个双手动范例,使其能够在交互式系统中使用。我们报告的实验结果表明,在捏捏时,四指分类准确率平均为79%,拿着旅行杯时为85%,拿着加重的包时为88%。我们进一步展示了不同手臂姿势的普遍性,并探索了提供实时视觉反馈的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信