C. Fais, Muhammad Ali, Isaiah Yasko, R. Walker, A. Lutfullaeva
{"title":"Experimental Performance Evaluation of Fixed-Geometry Hydrodynamic Thrust Bearings With Variable Taper Depths","authors":"C. Fais, Muhammad Ali, Isaiah Yasko, R. Walker, A. Lutfullaeva","doi":"10.1115/imece2021-70459","DOIUrl":null,"url":null,"abstract":"\n This paper presents experimental performance characteristics of fixed-geometry hydrodynamic thrust bearings machined to different helical taper depths. Theoretical analysis based on the Reynold’s equation states that under favorable conditions, these taper depths can produce and maintain load-supporting hydrodynamic pressure yet result in characteristically different oil-film pressure distribution profiles and magnitudes of friction torque. These characteristic performance indicators have not previously been observed experimentally for unidirectional fixed-geometry hydrodynamic thrust bearings with helically tapered pads. An experimental test rig was developed by re-purposing a horizontal milling machine capable of subjecting the test bearings to speeds up to 1,265 rpm and axial loads up to 250 lbf (1,112 N). Under various combinations of constant speed, load, and lubrication supply conditions, the steady-state oil-film pressure distribution across the bearing pad and active friction torque are measured. The effects of variable taper-depth on hydrodynamic pressure distribution and friction torque are compared and discussed.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents experimental performance characteristics of fixed-geometry hydrodynamic thrust bearings machined to different helical taper depths. Theoretical analysis based on the Reynold’s equation states that under favorable conditions, these taper depths can produce and maintain load-supporting hydrodynamic pressure yet result in characteristically different oil-film pressure distribution profiles and magnitudes of friction torque. These characteristic performance indicators have not previously been observed experimentally for unidirectional fixed-geometry hydrodynamic thrust bearings with helically tapered pads. An experimental test rig was developed by re-purposing a horizontal milling machine capable of subjecting the test bearings to speeds up to 1,265 rpm and axial loads up to 250 lbf (1,112 N). Under various combinations of constant speed, load, and lubrication supply conditions, the steady-state oil-film pressure distribution across the bearing pad and active friction torque are measured. The effects of variable taper-depth on hydrodynamic pressure distribution and friction torque are compared and discussed.