Site percolation on pseudo‐random graphs

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Sahar Diskin, M. Krivelevich
{"title":"Site percolation on pseudo‐random graphs","authors":"Sahar Diskin, M. Krivelevich","doi":"10.1002/rsa.21141","DOIUrl":null,"url":null,"abstract":"We consider vertex percolation on pseudo‐random d$$ d $$ ‐regular graphs. The previous study by the second author established the existence of phase transition from small components to a linear (in nd$$ \\frac{n}{d} $$ ) sized component, at p=1d$$ p=\\frac{1}{d} $$ . In the supercritical regime, our main result recovers the sharp asymptotic of the size of the largest component, and shows that all other components are typically much smaller. Furthermore, we consider other typical properties of the largest component such as the number of edges, existence of a long cycle and expansion. In the subcritical regime, we strengthen the upper bound on the likely component size.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21141","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

We consider vertex percolation on pseudo‐random d$$ d $$ ‐regular graphs. The previous study by the second author established the existence of phase transition from small components to a linear (in nd$$ \frac{n}{d} $$ ) sized component, at p=1d$$ p=\frac{1}{d} $$ . In the supercritical regime, our main result recovers the sharp asymptotic of the size of the largest component, and shows that all other components are typically much smaller. Furthermore, we consider other typical properties of the largest component such as the number of edges, existence of a long cycle and expansion. In the subcritical regime, we strengthen the upper bound on the likely component size.
伪随机图上的站点渗透
我们考虑伪随机d $$ d $$正则图上的顶点渗透。第二作者先前的研究证实了在p=1d $$ p=\frac{1}{d} $$处存在从小组分到线性(在nd $$ \frac{n}{d} $$)尺寸组分的相变。在超临界状态下,我们的主要结果恢复了最大分量大小的尖锐渐近,并表明所有其他分量通常都要小得多。此外,我们还考虑了最大分量的其他典型性质,如边数、长循环的存在性和可扩展性。在亚临界状态下,我们加强了可能分量大小的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信