Improved DOA estimation with acoustic vector sensor arrays using spatial sparsity and subarray manifold

Bo Li, Y. Zou
{"title":"Improved DOA estimation with acoustic vector sensor arrays using spatial sparsity and subarray manifold","authors":"Bo Li, Y. Zou","doi":"10.1109/ICASSP.2012.6288438","DOIUrl":null,"url":null,"abstract":"The performance of DOA estimation with scalar sensor arrays using spatial sparse signal reconstruction (SSR) technique is affected by the grid spacing. In this paper, we formulate the DOA estimation with the acoustic vector sensor (AVS) arrays under SSR framework. A coarse-to-fine DOA estimation algorithm has been developed. The source spatial sparsity and the inter-relations among the manifold matrices of the AVS subarrays are jointly utilized to eliminate the grid effect in the SSR technique and the improvement of the overall DOA estimation performance is achieved at low complexity. Simulation results show that the proposed method effectively mitigates the DOA estimation bias caused by off-grid sources. Interestingly, our method gives good DOA estimation accuracy when sources are closely located.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"2557-2560"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The performance of DOA estimation with scalar sensor arrays using spatial sparse signal reconstruction (SSR) technique is affected by the grid spacing. In this paper, we formulate the DOA estimation with the acoustic vector sensor (AVS) arrays under SSR framework. A coarse-to-fine DOA estimation algorithm has been developed. The source spatial sparsity and the inter-relations among the manifold matrices of the AVS subarrays are jointly utilized to eliminate the grid effect in the SSR technique and the improvement of the overall DOA estimation performance is achieved at low complexity. Simulation results show that the proposed method effectively mitigates the DOA estimation bias caused by off-grid sources. Interestingly, our method gives good DOA estimation accuracy when sources are closely located.
利用空间稀疏性和子阵流形改进声矢量传感器阵列的DOA估计
基于空间稀疏信号重构技术的标量传感器阵列方位估计受到网格间距的影响。本文在SSR框架下建立了声矢量传感器阵列的DOA估计方法。提出了一种从粗到精的DOA估计算法。利用源空间稀疏性和AVS子阵列流形矩阵之间的相互关系,消除了SSR技术中的网格效应,在低复杂度下提高了整体的DOA估计性能。仿真结果表明,该方法有效地减轻了离网源引起的DOA估计偏差。有趣的是,当源位置较近时,我们的方法具有较好的DOA估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信