{"title":"Multipath mitigation techniques for CBOC, TMBOC and AltBOC signals using advanced correlators architectures","authors":"A. Jovanovic, Y. Tawk, C. Botteron, P. Farine","doi":"10.1109/PLANS.2010.5507231","DOIUrl":null,"url":null,"abstract":"Multipath mitigation in urban canyons and indoor environments is an open issue for the reception of GNSS signals for high precision applications, as the presence of multipath components can lead to signal fading and ranging errors. New families of navigation signals, such as AltBOC, CBOC and TMBOC bring potential improvements, such as more signal power, better multipath mitigation capabilities and more robust navigation. Therefore the goal of this paper is to investigate multipath mitigation capabilities of CBOC, TMBOC and AltBOC with different discriminator architectures through theoretical analysis and realistic set-up with measurements in order to provide an overview of their performance in different environments.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Multipath mitigation in urban canyons and indoor environments is an open issue for the reception of GNSS signals for high precision applications, as the presence of multipath components can lead to signal fading and ranging errors. New families of navigation signals, such as AltBOC, CBOC and TMBOC bring potential improvements, such as more signal power, better multipath mitigation capabilities and more robust navigation. Therefore the goal of this paper is to investigate multipath mitigation capabilities of CBOC, TMBOC and AltBOC with different discriminator architectures through theoretical analysis and realistic set-up with measurements in order to provide an overview of their performance in different environments.