Salsabila Farah Rafidah, Ilham Rahmanto, Ardellia Bertha Pratiska
{"title":"Amplification genetic engineering strategy by Crispr-Cas13 Enzymes for detection and treatment COVID-19 mediated with gold nanoparticle (AUNP)","authors":"Salsabila Farah Rafidah, Ilham Rahmanto, Ardellia Bertha Pratiska","doi":"10.30651/jqm.v6i2.11227","DOIUrl":null,"url":null,"abstract":"WHO declared the disease outbreak due to the COVID-19 coronavirus a global pandemic. Indonesian government's efforts to eradicate the pandemic through mass screening have not been effective due to the limitations of the three main modalities used to detect COVID-19, including Rapid Test Diagnostic (RTD) antibodies, RTD antigens, and Reverse Transcriptase-Polymerase Chain Reaction (RT-RTD PCR), In addition, other detection tools are sometimes used, such as Enzyme-Linked Immunosorbent Assay (ELISA) and rapid molecular tests. To eradicate this pandemic, the government needs COVID-19 detection tools that are effective, cheap, fast, and accessible. To determine the application of the genetic engineering strategy of amplification by the CRISPR-cas13 enzyme for detecting and treating COVID-19 mediated by gold nanoparticles (AuNP). This research uses a qualitative literature study with content analysis, observation development, and literature study; an alternative solution to this problem is CRISPR-Cas13, achieved by the SHERLOCK method. This method designs and screens a targeted group of CRISPR RNAs based on the identification of functional crRNAs of SARS-CoV-2. Amplification of CRISPR-Cas13 by SHERLOCK and PAC-MAN enzymes has the potential to be the latest detection and treatment method for gold nanoparticle-mediated COVID-19 (AuNP) in Indonesia.","PeriodicalId":31682,"journal":{"name":"Qanun Medika Jurnal Kedokteran Fakultas Kedokteran Universitas Muhammadiyah Surabaya","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qanun Medika Jurnal Kedokteran Fakultas Kedokteran Universitas Muhammadiyah Surabaya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30651/jqm.v6i2.11227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
WHO declared the disease outbreak due to the COVID-19 coronavirus a global pandemic. Indonesian government's efforts to eradicate the pandemic through mass screening have not been effective due to the limitations of the three main modalities used to detect COVID-19, including Rapid Test Diagnostic (RTD) antibodies, RTD antigens, and Reverse Transcriptase-Polymerase Chain Reaction (RT-RTD PCR), In addition, other detection tools are sometimes used, such as Enzyme-Linked Immunosorbent Assay (ELISA) and rapid molecular tests. To eradicate this pandemic, the government needs COVID-19 detection tools that are effective, cheap, fast, and accessible. To determine the application of the genetic engineering strategy of amplification by the CRISPR-cas13 enzyme for detecting and treating COVID-19 mediated by gold nanoparticles (AuNP). This research uses a qualitative literature study with content analysis, observation development, and literature study; an alternative solution to this problem is CRISPR-Cas13, achieved by the SHERLOCK method. This method designs and screens a targeted group of CRISPR RNAs based on the identification of functional crRNAs of SARS-CoV-2. Amplification of CRISPR-Cas13 by SHERLOCK and PAC-MAN enzymes has the potential to be the latest detection and treatment method for gold nanoparticle-mediated COVID-19 (AuNP) in Indonesia.