Nonlinear Laplacian for Digraphs and its Applications to Network Analysis

Yuichi Yoshida
{"title":"Nonlinear Laplacian for Digraphs and its Applications to Network Analysis","authors":"Yuichi Yoshida","doi":"10.1145/2835776.2835785","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.
有向图的非线性拉普拉斯及其在网络分析中的应用
在这项工作中,我们引入了一个新的与有向图相关的马尔可夫算子,我们称之为非线性拉普拉斯算子。与之前有向图的拉普拉斯算子不同,非线性拉普拉斯算子不依赖于随机漫步过程的平稳分布,并且在非强连接的有向图上定义得很好。我们证明了非线性拉普拉斯算子具有非平凡特征值,并给出了有向图的电导与其非线性拉普拉斯算子的最小非零特征值之间的一个cheeger类不等式。最后,我们将非线性拉普拉斯算子应用到实际网络的分析中,得到了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信