RC-Struct: Reservoir Computing Meets Knowledge of Structure in MIMO-OFDM

Jiarui Xu, Zhou Zhou, Lianjun Li, Lizhong Zheng, Lingjia Liu
{"title":"RC-Struct: Reservoir Computing Meets Knowledge of Structure in MIMO-OFDM","authors":"Jiarui Xu, Zhou Zhou, Lianjun Li, Lizhong Zheng, Lingjia Liu","doi":"10.1109/GCWkshps52748.2021.9682086","DOIUrl":null,"url":null,"abstract":"This paper introduces a structure-based neural network architecture, namely RC-Struct, for MIMO-OFDM symbol detection. The RC-Struct exploits the temporal structure of the MIMO-OFDM signals through reservoir computing (RC). A binary classifier is built to perform the multi-class detection by leveraging the repetitive constellation structure in the communication system. The incorporation of RC allows the RC-Struct to be learned in a purely online fashion with extremely limited pilot symbols in each OFDM subframe. The binary classifier efficiently utilizes the precious online training symbols and allows an easy extension to high-order modulations without a substantial increase in complexity. The experiment demonstrates the effectiveness of RC-Struct in the MIMO-OFDM system with the dynamically adapted link. The results shed light on combining communication domain knowledge and learning-based receive processing for 5G and 5G Beyond.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"63 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a structure-based neural network architecture, namely RC-Struct, for MIMO-OFDM symbol detection. The RC-Struct exploits the temporal structure of the MIMO-OFDM signals through reservoir computing (RC). A binary classifier is built to perform the multi-class detection by leveraging the repetitive constellation structure in the communication system. The incorporation of RC allows the RC-Struct to be learned in a purely online fashion with extremely limited pilot symbols in each OFDM subframe. The binary classifier efficiently utilizes the precious online training symbols and allows an easy extension to high-order modulations without a substantial increase in complexity. The experiment demonstrates the effectiveness of RC-Struct in the MIMO-OFDM system with the dynamically adapted link. The results shed light on combining communication domain knowledge and learning-based receive processing for 5G and 5G Beyond.
rc结构:储层计算满足MIMO-OFDM的结构知识
本文介绍了一种基于结构的神经网络结构,即RC-Struct,用于MIMO-OFDM符号检测。RC结构通过储层计算(RC)利用MIMO-OFDM信号的时间结构。利用通信系统中重复的星座结构,构建二元分类器进行多类检测。RC的结合允许RC结构以纯粹的在线方式学习,每个OFDM子帧中的导频符号非常有限。二元分类器有效地利用了宝贵的在线训练符号,并允许在不增加复杂性的情况下轻松扩展到高阶调制。实验验证了RC-Struct在MIMO-OFDM系统中动态自适应链路的有效性。这一结果为5G和5G超越的通信领域知识和基于学习的接收处理相结合提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信