An axiomatic approach to image interpolation

V. Caselles, J. Morel, Catalina Sbert
{"title":"An axiomatic approach to image interpolation","authors":"V. Caselles, J. Morel, Catalina Sbert","doi":"10.1109/ICIP.1997.632125","DOIUrl":null,"url":null,"abstract":"We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The absolute minimal Lipschitz extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"35 1","pages":"376-379 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"388","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.632125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 388

Abstract

We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The absolute minimal Lipschitz extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range.
图像插值的一种公理方法
我们讨论了在平面上的一组曲线和/或点中给出插值数据的可能算法。我们提出了一组基本假设来满足插值算法,从而导致一组可能退化的椭圆型偏微分方程的模型。对绝对极小Lipschitz扩展模型(AMLE)进行了详细的研究。我们展示了一种可能的应用,即恢复动态范围较差的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信