Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals

Tania Escalante , Gerardo Rodríguez-Tapia , Miguel Linaje , Patricia Illoldi-Rangel , Rafael González-López
{"title":"Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals","authors":"Tania Escalante ,&nbsp;Gerardo Rodríguez-Tapia ,&nbsp;Miguel Linaje ,&nbsp;Patricia Illoldi-Rangel ,&nbsp;Rafael González-López","doi":"10.1016/S1405-888X(13)72073-4","DOIUrl":null,"url":null,"abstract":"<div><p>We evaluated the relevance of threshold selection in species distribution models on the delimitation of areas of endemism, using as case study the North American mammals. We modeled 40 species of endemic mammals of the Nearctic region with Maxent, and transformed these models to binary maps using four different thresholds: minimum training presence, tenth percentile training presence, equal training sensitivity and specificity, and 0.5 logistic probability. We analyzed the binary maps with the optimality method in order to identify areas of endemism and compare our results regarding previous analyses. The majority of the species tend to have very low values for the minimum training presence, whereas most of the species have a value of the tenth percentile training presence around 0.5, and the equal training sensitivity and specificity was around 0.3. Only with the tenth percentile threshold we recovered three out of the four patterns of endemism identified in North America, and detected more endemic species.The best identification of areas of endemism was obtained using the tenth percentile training presence threshold, which seems to recover better the distributional area of the mammals analyzed.</p></div>","PeriodicalId":31507,"journal":{"name":"TIP Revista Especializada en Ciencias QuimicoBiologicas","volume":"16 1","pages":"Pages 5-17"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1405-888X(13)72073-4","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TIP Revista Especializada en Ciencias QuimicoBiologicas","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1405888X13720734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

We evaluated the relevance of threshold selection in species distribution models on the delimitation of areas of endemism, using as case study the North American mammals. We modeled 40 species of endemic mammals of the Nearctic region with Maxent, and transformed these models to binary maps using four different thresholds: minimum training presence, tenth percentile training presence, equal training sensitivity and specificity, and 0.5 logistic probability. We analyzed the binary maps with the optimality method in order to identify areas of endemism and compare our results regarding previous analyses. The majority of the species tend to have very low values for the minimum training presence, whereas most of the species have a value of the tenth percentile training presence around 0.5, and the equal training sensitivity and specificity was around 0.3. Only with the tenth percentile threshold we recovered three out of the four patterns of endemism identified in North America, and detected more endemic species.The best identification of areas of endemism was obtained using the tenth percentile training presence threshold, which seems to recover better the distributional area of the mammals analyzed.

从物种分布模型确定特有区域:阈值选择和新北极哺乳动物
我们以北美哺乳动物为例,评估了物种分布模型中阈值选择与特有区划分的相关性。我们利用Maxent对新北极地区的40种特有哺乳动物进行建模,并使用4个不同的阈值将这些模型转换为二值图:最小训练存在度、第10百分位训练存在度、训练灵敏度和特异性等阈值以及0.5 logistic概率。我们用最优性方法分析了二值图,以确定地方性区域,并将我们的结果与之前的分析进行比较。大多数物种的最小训练存在度倾向于非常低的值,而大多数物种的第10百分位训练存在度值在0.5左右,相等的训练灵敏度和特异性在0.3左右。仅用第10个百分位阈值,我们就恢复了在北美发现的四种特有模式中的三种,并发现了更多的特有物种。采用第10百分位训练存在阈值对特有区域的识别效果最好,能较好地恢复所分析哺乳动物的分布区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信