Improving the Detection of The Prostrate in Ultrasound Images Using Machine Learning Based Image Processing

Tao Peng, Yiyun Wu, Jing Cai
{"title":"Improving the Detection of The Prostrate in Ultrasound Images Using Machine Learning Based Image Processing","authors":"Tao Peng, Yiyun Wu, Jing Cai","doi":"10.1109/ISBI52829.2022.9761639","DOIUrl":null,"url":null,"abstract":"This work aims to develop a method for accurate prostate segmentation in transrectal ultrasound (TRUS) images. However, accurate prostate segmentation remains a challenging task for many reasons, such as the missing/ambiguous boundary between the prostate and surrounding organs, the presence of shadow artifacts, and intra-prostate intensity heterogeneity. This work proposes a three-cascaded prostate segmentation framework, using only a few manually delineated points as a prior, including (1) an improved principal curve-based model is used to obtain the data sequences consisting of data points and projection indexes; (2) an improved differential evolution-based artificial neural network is used for training to decrease the model error; and (3) the artificial neural network’s parameters are used to explain the smooth mathematical description of the prostate contour. Experimental results show that our proposed method achieves superior segmentation performance in prostate TRUS images than state-of-the-art methods.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"62 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work aims to develop a method for accurate prostate segmentation in transrectal ultrasound (TRUS) images. However, accurate prostate segmentation remains a challenging task for many reasons, such as the missing/ambiguous boundary between the prostate and surrounding organs, the presence of shadow artifacts, and intra-prostate intensity heterogeneity. This work proposes a three-cascaded prostate segmentation framework, using only a few manually delineated points as a prior, including (1) an improved principal curve-based model is used to obtain the data sequences consisting of data points and projection indexes; (2) an improved differential evolution-based artificial neural network is used for training to decrease the model error; and (3) the artificial neural network’s parameters are used to explain the smooth mathematical description of the prostate contour. Experimental results show that our proposed method achieves superior segmentation performance in prostate TRUS images than state-of-the-art methods.
基于机器学习的图像处理改进超声图像中前列腺的检测
这项工作的目的是开发一种方法,准确的前列腺分割经直肠超声(TRUS)图像。然而,由于前列腺和周围器官之间的边界缺失/模糊、阴影伪影的存在以及前列腺内强度异质性等原因,准确的前列腺分割仍然是一项具有挑战性的任务。本文提出了一种三级联的前列腺分割框架,该框架仅使用少量人工划分的点作为先验,包括:(1)使用改进的基于主曲线的模型来获得由数据点和投影索引组成的数据序列;(2)采用改进的基于差分进化的人工神经网络进行训练,减小模型误差;(3)利用人工神经网络参数解释前列腺轮廓的光滑数学描述。实验结果表明,该方法对前列腺TRUS图像的分割效果优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信