A. Chen, Yan Bai, Shi-Bin Wang, Yuangang Liu, Z. Chen
{"title":"Molecular Biocompatibility Evaluation of Poly-L-Ornithine-Coated Alginate Microcapsules by Investigating mRNA Expression of Pro-Inflammatory Cytokines","authors":"A. Chen, Yan Bai, Shi-Bin Wang, Yuangang Liu, Z. Chen","doi":"10.4028/www.scientific.net/JBBTE.14.53","DOIUrl":null,"url":null,"abstract":"Following a polyelectrolytical complex reaction, the poly-L-ornithine (PLO)-alginate microcapsules were prepared by coating PLO on calcium alginate beads which were produced by a high-voltage electrostatic droplet generator. The biocompatibility of the microcapsules at the molecular level was evaluated through investigating the mRNA expression of pro-inflammatory cytokines; that is, the effect of the PLO coating of alginate beads on the mRNA expression of TNF-α, IL-1β, and IL-6 were measured using the RT-PCR method. The resulting PLO-coated alginate microcapsules have a smooth surface with a mean diameter of 309µm. The molecular biocompatibility studies show that coating microcapsules with PLO has no significant effect on the biocompatibility of alginate microcapsules (p>0.05), and both alginate microcapsules and PLO-coated microcapsules are significantly different from the positive control (p<0.05); however, both are also capable of causing an inflammatory response at a molecular level since both are significantly different from the blank control (p<0.05). Furthermore, with the increase in concentration of microcapsules or co-cultured time, part of the mRNA expression of cytokines is significantly increased. The results also demonstrate that the method used in this study, co-incubating the microcapsules with macrophages and measuring the mRNA expression of cytokines by RT-PCR, may be a useful method for evaluating the biocompatibility of coating materials of microcapsules.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"5 1","pages":"53 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.14.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Following a polyelectrolytical complex reaction, the poly-L-ornithine (PLO)-alginate microcapsules were prepared by coating PLO on calcium alginate beads which were produced by a high-voltage electrostatic droplet generator. The biocompatibility of the microcapsules at the molecular level was evaluated through investigating the mRNA expression of pro-inflammatory cytokines; that is, the effect of the PLO coating of alginate beads on the mRNA expression of TNF-α, IL-1β, and IL-6 were measured using the RT-PCR method. The resulting PLO-coated alginate microcapsules have a smooth surface with a mean diameter of 309µm. The molecular biocompatibility studies show that coating microcapsules with PLO has no significant effect on the biocompatibility of alginate microcapsules (p>0.05), and both alginate microcapsules and PLO-coated microcapsules are significantly different from the positive control (p<0.05); however, both are also capable of causing an inflammatory response at a molecular level since both are significantly different from the blank control (p<0.05). Furthermore, with the increase in concentration of microcapsules or co-cultured time, part of the mRNA expression of cytokines is significantly increased. The results also demonstrate that the method used in this study, co-incubating the microcapsules with macrophages and measuring the mRNA expression of cytokines by RT-PCR, may be a useful method for evaluating the biocompatibility of coating materials of microcapsules.