Interaction-Aware Approach for Online Parameter Estimation of a Multi-lane Intelligent Driver Model

J. Buyer, Dominic Waldenmayer, Nico Sußmann, R. Zöllner, Johann Marius Zöllner
{"title":"Interaction-Aware Approach for Online Parameter Estimation of a Multi-lane Intelligent Driver Model","authors":"J. Buyer, Dominic Waldenmayer, Nico Sußmann, R. Zöllner, Johann Marius Zöllner","doi":"10.1109/ITSC.2019.8917257","DOIUrl":null,"url":null,"abstract":"The paper presents a probabilistic approach for online parameter estimation of an enhanced car-following model appropriate for multi-lane traffic, which is based on an extension of the well-known Intelligent Driver Model (IDM). The approach explicitly considers the simultaneous influence of several interacting vehicles on the longitudinal dynamics of the ego-vehicle. Therefore, a method to extract the relevant reference vehicles considered in the proposed multi-lane car-following model is developed. In order to calibrate the model parameters online, a particle filter approach, which is able to deal with the overdetermined model structure, is employed. Experimental studies using a real highway scenario observed by vehicle surroundings sensors show the need of the online-calibrated multi-lane architecture. To use the model for vehicle speed prediction, a further learning-based extension is suggested which enables the adaption of the model parameters over the prediction horizon.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"6 1","pages":"3967-3973"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The paper presents a probabilistic approach for online parameter estimation of an enhanced car-following model appropriate for multi-lane traffic, which is based on an extension of the well-known Intelligent Driver Model (IDM). The approach explicitly considers the simultaneous influence of several interacting vehicles on the longitudinal dynamics of the ego-vehicle. Therefore, a method to extract the relevant reference vehicles considered in the proposed multi-lane car-following model is developed. In order to calibrate the model parameters online, a particle filter approach, which is able to deal with the overdetermined model structure, is employed. Experimental studies using a real highway scenario observed by vehicle surroundings sensors show the need of the online-calibrated multi-lane architecture. To use the model for vehicle speed prediction, a further learning-based extension is suggested which enables the adaption of the model parameters over the prediction horizon.
多车道智能驾驶员模型参数在线估计的交互感知方法
本文提出了一种适用于多车道交通的增强型车辆跟随模型的概率在线参数估计方法,该模型是基于著名的智能驾驶员模型(IDM)的扩展。该方法明确考虑了多个相互作用的车辆同时对自我车辆纵向动力学的影响。为此,提出了一种提取多车道车辆跟随模型中相关参考车辆的方法。为了在线标定模型参数,采用了一种能够处理超定模型结构的粒子滤波方法。利用车辆环境传感器观测到的真实公路场景进行的实验研究表明,在线校准的多车道架构是必要的。为了将模型应用于车辆速度预测,提出了一种基于学习的扩展方法,使模型参数能够在预测范围内自适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信