Aggregation Bias, Local Estimates and the Devil

P. Cardiff
{"title":"Aggregation Bias, Local Estimates and the Devil","authors":"P. Cardiff","doi":"10.2139/ssrn.3739892","DOIUrl":null,"url":null,"abstract":"When faced with a big problem, it is natural to summarize the data en route to a solution. But accepting summary as fact gives up evidence for convenience. Statistical measures from aggregate data may only be capable of indication or trends over time. Only consistency provides a mathematical basis for compiling data into a model; otherwise, the assumptions that turn actual data into indexes are subjective and biased. This paper recommends models of elements but not aggregate models. The proof of empiricism is control of micro variables representing the heterogeneity of individuals – these are the “critical details.” Imputation adds bias and variance to measurement, post weighting only complicates results arbitrarily, and allocation of sums by crude ratios is unjustified.","PeriodicalId":18085,"journal":{"name":"Macroeconomics: Employment","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Employment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3739892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When faced with a big problem, it is natural to summarize the data en route to a solution. But accepting summary as fact gives up evidence for convenience. Statistical measures from aggregate data may only be capable of indication or trends over time. Only consistency provides a mathematical basis for compiling data into a model; otherwise, the assumptions that turn actual data into indexes are subjective and biased. This paper recommends models of elements but not aggregate models. The proof of empiricism is control of micro variables representing the heterogeneity of individuals – these are the “critical details.” Imputation adds bias and variance to measurement, post weighting only complicates results arbitrarily, and allocation of sums by crude ratios is unjustified.
聚集偏差,局部估计和魔鬼
当面对一个大问题时,在找到解决方案的过程中总结数据是很自然的。但接受摘要为事实是为了方便而放弃了证据。汇总数据的统计措施可能只能显示一段时间内的趋势。只有一致性为将数据编译成模型提供了数学基础;否则,将实际数据转化为指数的假设是主观的和有偏见的。本文推荐的是元素模型,而不是聚合模型。经验主义的证明是对代表个体异质性的微观变量的控制——这些是“关键细节”。归算给测量增加了偏差和方差,事后加权只会使结果任意复杂化,而按粗比例分配款项是不合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信