Network Intrusion Detection with XGBoost

A. Gouveia, M. Correia
{"title":"Network Intrusion Detection with XGBoost","authors":"A. Gouveia, M. Correia","doi":"10.1201/9780429270567-6","DOIUrl":null,"url":null,"abstract":"XGBoost is a recent machine learning method that has been getting increasing attention. It won Kaggle’s Higgs Machine Learning Challenge, among several other Kaggle competitions, due to its performance. In this , we explore the use of XGBoost in the context of anomaly-based network intrusion detection, an area in which there is a considerable gap. We study not only the performance of XGBoost with two recent datasets, but also how to optimize its performance and model parameter choice. We also provide insights into which dataset features are best for performance tuning.","PeriodicalId":69922,"journal":{"name":"物联网(英文)","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1201/9780429270567-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

XGBoost is a recent machine learning method that has been getting increasing attention. It won Kaggle’s Higgs Machine Learning Challenge, among several other Kaggle competitions, due to its performance. In this , we explore the use of XGBoost in the context of anomaly-based network intrusion detection, an area in which there is a considerable gap. We study not only the performance of XGBoost with two recent datasets, but also how to optimize its performance and model parameter choice. We also provide insights into which dataset features are best for performance tuning.
基于XGBoost的网络入侵检测
XGBoost是一种最近受到越来越多关注的机器学习方法。由于它的表现,它赢得了Kaggle的希格斯机器学习挑战赛,以及其他几项Kaggle比赛。在这方面,我们探讨了在基于异常的网络入侵检测的背景下使用XGBoost,这是一个存在相当大差距的领域。我们不仅用两个最新的数据集研究了XGBoost的性能,还研究了如何优化其性能和模型参数的选择。我们还提供了关于哪些数据集特性最适合进行性能调优的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信