Preparation of β-Cu (In,Ga)3Se5 thin films for wide band gap absorber for top cell in CIGS tandem structure

J. Kim, Y. Shin, B. Ahn
{"title":"Preparation of β-Cu (In,Ga)3Se5 thin films for wide band gap absorber for top cell in CIGS tandem structure","authors":"J. Kim, Y. Shin, B. Ahn","doi":"10.1109/PVSC.2010.5614624","DOIUrl":null,"url":null,"abstract":"Polycrystalline Cu<inf>x</inf>(In,Ga)<inf>y</inf>Se<inf>z</inf> films were deposited on Mo coated soda-lime glass substrate by three-stage co-evaporation process. Cu content x can be controlled by deposition times of each stage. The presence of β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> phase in films was confirmed by X-ray Diffraction and Auger Electron Spectroscopy when the x decreased below 0.5. The grain size became smaller as the x decreased. The absorption edge moved to shorter wavelength and the optical transmittance of long wavelength noticeably increased in β-Cu(In,Ga)<inf>3</inf>Se<inf>5</inf> system comparing the conventional Cu(In,Ga)Se<inf>2</inf>. Its optical band gap was 1.49eV. The CdS/Cu(In<inf>0.3</inf>Ga<inf>0.7</inf>)<inf>3</inf>Se<inf>5</inf> solar cell showed the efficiency of 8.09% with an active area of 0.44cm<sup>2</sup>. High transmittance and band gap are desirable to be a light absorber for top cell, but further effort is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"144 1","pages":"003439-003442"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Polycrystalline Cux(In,Ga)ySez films were deposited on Mo coated soda-lime glass substrate by three-stage co-evaporation process. Cu content x can be controlled by deposition times of each stage. The presence of β-Cu(In,Ga)3Se5 phase in films was confirmed by X-ray Diffraction and Auger Electron Spectroscopy when the x decreased below 0.5. The grain size became smaller as the x decreased. The absorption edge moved to shorter wavelength and the optical transmittance of long wavelength noticeably increased in β-Cu(In,Ga)3Se5 system comparing the conventional Cu(In,Ga)Se2. Its optical band gap was 1.49eV. The CdS/Cu(In0.3Ga0.7)3Se5 solar cell showed the efficiency of 8.09% with an active area of 0.44cm2. High transmittance and band gap are desirable to be a light absorber for top cell, but further effort is necessary to improve cell efficiency for the top cell application in CIGS tandem solar cells.
CIGS串联结构顶层电池宽禁带吸收膜β-Cu (In,Ga)3Se5薄膜的制备
采用三段式共蒸发法制备了多晶Cux(In,Ga)ySez薄膜。Cu含量x可以通过各阶段的沉积次数来控制。x射线衍射和俄歇电子能谱证实,当x值小于0.5时,薄膜中存在β-Cu(In,Ga)3Se5相。随着x的减小,晶粒尺寸变小。与传统的Cu(in,Ga)Se2相比,β-Cu(in,Ga)3Se5体系的吸收边向短波长方向移动,长波透光率明显提高。其光学带隙为1.49eV。CdS/Cu(In0.3Ga0.7)3Se5太阳能电池的效率为8.09%,有效面积为0.44cm2。高透光率和高带隙是顶电池吸收光的理想材料,但顶电池在CIGS串联太阳能电池中的应用还需要进一步提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信