Alessandro Alisson de Lemos Araújo, Wanessa Paulino Neves Silva, E. Foletto, E. Neto
{"title":"PHENOL ESTIMATION USING FLORY-HUGGINS PARAMETERS AND CLOUD POINT OF POLIETHOXYLATE SURFACTANTS","authors":"Alessandro Alisson de Lemos Araújo, Wanessa Paulino Neves Silva, E. Foletto, E. Neto","doi":"10.5419/BJPG2019-0002","DOIUrl":null,"url":null,"abstract":"This work examines the thermodynamics of phenol extraction by cloud point varying the ethoxylation degrees of nonylphenolpoliethoxylate surfactants (NPEOn) (9.5, 10, 11 and 12). The Flory-Huggins model was applied to estimate enthalpy (ΔHmix) and entropy (ΔSmix) parameters of the mixture, as well as the aggregate number (N). Results show that ΔHmix and ΔSmix values have a direct relationship with the ethoxylation degree of the surfactant used. Differently, aggregate number (N) values have an inverse relationship with the ethoxylation degree. The fitting to the Flory-Huggins model presented a standard deviation (SD) that ranged from 0.161 to 4.037 for each surfactant studied. It was observed that the increase of the phenol concentration in the surfactant + water system resulted in a decrease in the cloud point of the studied surfactants. These results contribute significantly to the application of this type of surfactant in phenol extraction processes.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/BJPG2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work examines the thermodynamics of phenol extraction by cloud point varying the ethoxylation degrees of nonylphenolpoliethoxylate surfactants (NPEOn) (9.5, 10, 11 and 12). The Flory-Huggins model was applied to estimate enthalpy (ΔHmix) and entropy (ΔSmix) parameters of the mixture, as well as the aggregate number (N). Results show that ΔHmix and ΔSmix values have a direct relationship with the ethoxylation degree of the surfactant used. Differently, aggregate number (N) values have an inverse relationship with the ethoxylation degree. The fitting to the Flory-Huggins model presented a standard deviation (SD) that ranged from 0.161 to 4.037 for each surfactant studied. It was observed that the increase of the phenol concentration in the surfactant + water system resulted in a decrease in the cloud point of the studied surfactants. These results contribute significantly to the application of this type of surfactant in phenol extraction processes.