A New Explicit Singularly P-Stable Four-Step Method for the Numerical Solution of Second Order IVPs

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
M. M. Khalsaraei, A. Shokri
{"title":"A New Explicit Singularly P-Stable Four-Step Method for the Numerical Solution of Second Order IVPs","authors":"M. M. Khalsaraei, A. Shokri","doi":"10.22052/IJMC.2020.207671.1472","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new symmetric explicit four-step method with variable coefficients for the numerical solution of second-order linear periodic and oscillatory initial value problems of ordinary differential equations. For the first time in the literature, we generate an explicit method with the most important singularly P-stability property. The method is multiderivative and has algebraic order eight and infinite order of phase-lag. The numerical results for some chemical (e.g. orbit problems of Stiefel and Bettis) as well as quantum chemistry problems (i.e. systems of coupled differential equations) indicated that the new method is superior, efficient, accurate and stable.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.207671.1472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we introduce a new symmetric explicit four-step method with variable coefficients for the numerical solution of second-order linear periodic and oscillatory initial value problems of ordinary differential equations. For the first time in the literature, we generate an explicit method with the most important singularly P-stability property. The method is multiderivative and has algebraic order eight and infinite order of phase-lag. The numerical results for some chemical (e.g. orbit problems of Stiefel and Bettis) as well as quantum chemistry problems (i.e. systems of coupled differential equations) indicated that the new method is superior, efficient, accurate and stable.
二阶IVPs数值解的一种新的显式奇异p稳定四步法
本文提出了一种新的变系数对称显式四步法,用于求解二阶线性周期和振荡初值问题。在文献中,我们首次生成了具有最重要的奇异p稳定性质的显式方法。该方法是多重导数的,具有代数八阶和无限阶的相位滞后。对一些化学问题(如Stiefel和Bettis的轨道问题)和量子化学问题(如耦合微分方程组)的数值计算结果表明,该方法是一种优越、高效、准确和稳定的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信