{"title":"Biomaterials as regenerative therapies for traumatic brain injury: a narrative review","authors":"Wang Hui, Su Zhi, Ling Ziao","doi":"10.4103/2773-2398.356521","DOIUrl":null,"url":null,"abstract":"Over recent years, the events associated with traumatic brain injury (TBI) have become critical health problems. TBI involves various functional deficits that are caused by neuronal loss and is a common feature in various neuropathologies. Patients with TBI have a very high degree of disability and impairment at both the physical and psychological levels, thus creating a significant burden on the quality of life. Although stem cell therapy has achieved some success in the reconstruction of neural circuits for TBI therapies, there are several limitations that need to be overcome, such as the stem cell transplantation pathways and time to transplantation are challenges for clinical application. Recently, bioactive materials from the tissue engineering field have become promising candidates for TBI therapies. Herein, we briefly summarize and discuss the advantages and disadvantages of TBI-related biomaterials (such as hydrogels, nanofibers, and nanomaterials) for the regeneration of neural tissue and functional recovery at the lesion sites of TBI. Finally, we describe the desirable characteristics of bioactive materials for neural repair in TBI. Because the development of therapeutic strategies with biomaterials is still in its infancy, biomaterials deserve high priority and further development as a treatment for TBI.","PeriodicalId":93737,"journal":{"name":"Brain network and modulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain network and modulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2773-2398.356521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Over recent years, the events associated with traumatic brain injury (TBI) have become critical health problems. TBI involves various functional deficits that are caused by neuronal loss and is a common feature in various neuropathologies. Patients with TBI have a very high degree of disability and impairment at both the physical and psychological levels, thus creating a significant burden on the quality of life. Although stem cell therapy has achieved some success in the reconstruction of neural circuits for TBI therapies, there are several limitations that need to be overcome, such as the stem cell transplantation pathways and time to transplantation are challenges for clinical application. Recently, bioactive materials from the tissue engineering field have become promising candidates for TBI therapies. Herein, we briefly summarize and discuss the advantages and disadvantages of TBI-related biomaterials (such as hydrogels, nanofibers, and nanomaterials) for the regeneration of neural tissue and functional recovery at the lesion sites of TBI. Finally, we describe the desirable characteristics of bioactive materials for neural repair in TBI. Because the development of therapeutic strategies with biomaterials is still in its infancy, biomaterials deserve high priority and further development as a treatment for TBI.