{"title":"A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media","authors":"A. Hoori","doi":"10.31026/j.eng.2013.08.05","DOIUrl":null,"url":null,"abstract":"In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum method and Modified 2D-Checksum. In 2D-checksum method, summing process was done for 7×7 patterns in row direction and then in column direction to result 8×8 patterns. While in modified method, an additional parity diagonal vector was added to the pattern to be 8×9. By combining the benefits of using single parity (detecting odd number of error bits) and the benefits of checksum (reducing the effect of 4-bit errors) and combining them in 2D shape, the detection process was improved. By contaminating any sample of data with up to 33% of noise (change 0 to 1 and vice versa), the detecting process in first method was improved by approximately 50% compared to the ordinary traditional two dimensional-parity method and gives best detection results in second novel method ","PeriodicalId":52570,"journal":{"name":"Journal of Engineering Science","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31026/j.eng.2013.08.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum method and Modified 2D-Checksum. In 2D-checksum method, summing process was done for 7×7 patterns in row direction and then in column direction to result 8×8 patterns. While in modified method, an additional parity diagonal vector was added to the pattern to be 8×9. By combining the benefits of using single parity (detecting odd number of error bits) and the benefits of checksum (reducing the effect of 4-bit errors) and combining them in 2D shape, the detection process was improved. By contaminating any sample of data with up to 33% of noise (change 0 to 1 and vice versa), the detecting process in first method was improved by approximately 50% compared to the ordinary traditional two dimensional-parity method and gives best detection results in second novel method