Jack Lehrecke, Juan Pablo Osman-Letelier, M. Schlaich
{"title":"Tendon Geometry Optimization Using Path Integrals","authors":"Jack Lehrecke, Juan Pablo Osman-Letelier, M. Schlaich","doi":"10.20898/J.IASS.2020.007","DOIUrl":null,"url":null,"abstract":"The implementation of post-tensioned elements in concrete structures offers a multitude of benefits with regards to the overall structural behavior, with the efficacy of the applied tendons depending heavily on their geometry. However, the derivation of an optimal tendon geometry for\n a given structure is nontrivial, requiring engineering experience or the use of complex and often computationally demanding methodologies, e.g.the use of topology optimization strategies. This paper aims to investigate the possibility for optimizing tendon geometries using a path integral\n based objective function developed at the TU Berlin. For this purpose, the mathematical background is first presented to illustrate the proposed concept. Beginning with a tendon geometry optimization of a simply supported beam and progressing to more complex systems, a generalized approach\n for doubly curved spatial structures will be presented.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/J.IASS.2020.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The implementation of post-tensioned elements in concrete structures offers a multitude of benefits with regards to the overall structural behavior, with the efficacy of the applied tendons depending heavily on their geometry. However, the derivation of an optimal tendon geometry for
a given structure is nontrivial, requiring engineering experience or the use of complex and often computationally demanding methodologies, e.g.the use of topology optimization strategies. This paper aims to investigate the possibility for optimizing tendon geometries using a path integral
based objective function developed at the TU Berlin. For this purpose, the mathematical background is first presented to illustrate the proposed concept. Beginning with a tendon geometry optimization of a simply supported beam and progressing to more complex systems, a generalized approach
for doubly curved spatial structures will be presented.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.