Non-Contact Magnetic Tomography Method MTM Inspection for Re-Instatement of a Decommissioned Buried Pipeline

Choong Meng Lam, N.A.H. Jasni
{"title":"Non-Contact Magnetic Tomography Method MTM Inspection for Re-Instatement of a Decommissioned Buried Pipeline","authors":"Choong Meng Lam, N.A.H. Jasni","doi":"10.4043/31418-ms","DOIUrl":null,"url":null,"abstract":"\n The Magnetic Tomography Method (MTM) has been introduced as a non-intrusive inspection technique capable of inspecting ferromagnetic materials such as carbon steel pipeline without any contact. A buried main pipeline in one of PETRONAS's operating countries that had been out of service for more than 8 years needed to be inspected prior to being re-instated. This paper discusses in detail how this innovative MTM technology was used to successfully inspect a decommissioned buried pipeline and safely re-instated the pipeline operation. The MTM inspection covered 172 kilometres of buried pipeline, including the calibration work which involved direct assessment methods. The danger degrees such as Rank 1, 2 and 3, as well as the safe operating pressures, Psafe along the entire pipeline were determined using the MTM results of Risk Factor F in accordance with MTM technical approach. Direct assessment findings were consistent with the MTM inspection findings, as the technology detected all of the anomalies discovered by the direct assessment methods. MTM inspections of decommissioned buried pipelines are proven since they are reliant on the residual self-magnetic leakage field (SMLF) in the pipeline and do not require any intrusive works. Being a non-intrusive inspection method, this technology was not affected by the low pressure & low flowrate, and no changes to the pipeline operation mode was required during the inspection. Further, this MTM inspection method was not affected by the stalled pigs inside the pipeline, as this inspection method was non-intrusive. The inspection results serve as major input to the Pipeline Integrity Management System (PIMS) to effectively manage the integrity and risk level of the pipeline.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31418-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Magnetic Tomography Method (MTM) has been introduced as a non-intrusive inspection technique capable of inspecting ferromagnetic materials such as carbon steel pipeline without any contact. A buried main pipeline in one of PETRONAS's operating countries that had been out of service for more than 8 years needed to be inspected prior to being re-instated. This paper discusses in detail how this innovative MTM technology was used to successfully inspect a decommissioned buried pipeline and safely re-instated the pipeline operation. The MTM inspection covered 172 kilometres of buried pipeline, including the calibration work which involved direct assessment methods. The danger degrees such as Rank 1, 2 and 3, as well as the safe operating pressures, Psafe along the entire pipeline were determined using the MTM results of Risk Factor F in accordance with MTM technical approach. Direct assessment findings were consistent with the MTM inspection findings, as the technology detected all of the anomalies discovered by the direct assessment methods. MTM inspections of decommissioned buried pipelines are proven since they are reliant on the residual self-magnetic leakage field (SMLF) in the pipeline and do not require any intrusive works. Being a non-intrusive inspection method, this technology was not affected by the low pressure & low flowrate, and no changes to the pipeline operation mode was required during the inspection. Further, this MTM inspection method was not affected by the stalled pigs inside the pipeline, as this inspection method was non-intrusive. The inspection results serve as major input to the Pipeline Integrity Management System (PIMS) to effectively manage the integrity and risk level of the pipeline.
非接触磁层析成像法MTM检测退役埋地管道修复
磁层析成像技术(MTM)是一种非侵入式检测技术,可以对碳钢管道等铁磁性材料进行无接触检测。在马来西亚国家石油公司的一个运营国家,一条埋在地下的主管道已经停止服务超过8年,需要在重新启动之前进行检查。本文详细讨论了如何使用这种创新的MTM技术成功检查退役埋地管道并安全恢复管道运行。MTM检查了172公里的埋地管道,包括涉及直接评估方法的校准工作。根据MTM技术方法,利用风险因子F的MTM结果确定了整个管道的1、2、3级危险等级以及安全运行压力Psafe。直接评估结果与MTM检查结果一致,因为该技术检测到直接评估方法发现的所有异常。由于MTM检查依赖于管道中的残余自漏磁场(SMLF),并且不需要任何侵入性工作,因此已被证明可以对退役的埋地管道进行MTM检查。该技术是一种非侵入式检测方法,不受低压低流量的影响,检测过程中不需要改变管道运行方式。此外,这种MTM检测方法不受管道内停滞清管器的影响,因为这种检测方法是非侵入式的。检查结果作为管道完整性管理系统(PIMS)的主要输入,以有效地管理管道的完整性和风险水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信