Zero-sum analogues of van der Waerden’s theorem on arithmetic progressions

IF 0.4 Q4 MATHEMATICS, APPLIED
Aaron Robertson
{"title":"Zero-sum analogues of van der Waerden’s theorem on arithmetic progressions","authors":"Aaron Robertson","doi":"10.4310/joc.2020.v11.n2.a1","DOIUrl":null,"url":null,"abstract":"Let $r$ and $k$ be positive integers with $r \\mid k$. Denote by $w_{\\mathrm{\\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\\chi:[1,w_{\\mathrm{\\mathfrak{z}}}(k;r)] \\rightarrow \\{0,1,\\dots,r-1\\}$ admits a $k$-term arithmetic progression $a,a+d,\\dots,a+(k-1)d$ with $\\sum_{j=0}^{k-1} \\chi(a+jd) \\equiv 0 \\,(\\mathrm{mod }\\,r)$. We investigate these numbers as well as a \"mixed\" monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\\mathrm{\\mathfrak{z}}}(k;r)$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $w_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow \{0,1,\dots,r-1\}$ admits a $k$-term arithmetic progression $a,a+d,\dots,a+(k-1)d$ with $\sum_{j=0}^{k-1} \chi(a+jd) \equiv 0 \,(\mathrm{mod }\,r)$. We investigate these numbers as well as a "mixed" monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\mathrm{\mathfrak{z}}}(k;r)$.
等差数列的范德华登定理的零和类比
设$r$和$k$为正整数,$r \mid k$为正整数。用$w_{\mathrm{\mathfrak{z}}}(k;r)$表示最小整数,使得每个着色$\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow \{0,1,\dots,r-1\}$都包含一个$k$项等差数列$a,a+d,\dots,a+(k-1)d$和$\sum_{j=0}^{k-1} \chi(a+jd) \equiv 0 \,(\mathrm{mod }\,r)$。我们研究了这些数字以及“混合”单色/零和模拟。我们还提出了范德瓦尔登数和$w_{\mathrm{\mathfrak{z}}}(k;r)$之间有趣的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信