Riesz-type criteria for L-functions in the Selberg class

Pub Date : 2022-11-05 DOI:10.4153/s0008414x23000354
Shivajee Gupta, A. Vatwani
{"title":"Riesz-type criteria for L-functions in the Selberg class","authors":"Shivajee Gupta, A. Vatwani","doi":"10.4153/s0008414x23000354","DOIUrl":null,"url":null,"abstract":"We formulate a generalization of Riesz-type criteria in the setting of $L$-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the Grand Riemann Hypothesis (GRH) for $L$-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for $L$-functions in this subclass. Identities of Ramanujan-Hardy-Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer $G$-function of the type $G^{n \\ 0}_{0 \\ n}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We formulate a generalization of Riesz-type criteria in the setting of $L$-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the Grand Riemann Hypothesis (GRH) for $L$-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for $L$-functions in this subclass. Identities of Ramanujan-Hardy-Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer $G$-function of the type $G^{n \ 0}_{0 \ n}$.
分享
查看原文
Selberg类中l函数的riesz型准则
在属于Selberg类的$L$-函数的情况下,我们给出了riesz型准则的推广。对于满足Selberg类公理的$L$-函数,我们得到了一个足以满足GRH的判据,而无需对其系数施加拉马努金假设。构造了Selberg类的一个子类,并证明了该类中$L$-函数的GRH的一个必要判据。在这种情况下,还建立了Ramanujan-Hardy-Littlewood型恒等式,在一些特殊的情况下,我们得到了新的变换公式,这些变换公式涉及到类型为$G^{n \ 0}_{0 \ n}$的Meijer $G$-函数的特殊值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信