Construction of New Gyrogroups and the Structure of their Subgyrogroups

S. Mahdavi, A. Ashrafi, M. Salahshour
{"title":"Construction of New Gyrogroups and the Structure of their Subgyrogroups","authors":"S. Mahdavi, A. Ashrafi, M. Salahshour","doi":"10.29252/AS.2020.1971","DOIUrl":null,"url":null,"abstract":"Suppose that $G$ is a groupoid with binary operation $\\otimes$. The pair $(G,\\otimes)$ is said to be a gyrogroup if the operation $\\otimes$ has a left identity, each element $a \\in G$ has a left inverse and the gyroassociative law and the left loop property are satisfied in $G$. In this paper, a method for constructing new gyrogroups from old ones is presented and the structure of subgyrogroups of these gyrogroups are also given. As a consequence of this work, five $2-$gyrogroups of order $2^n$, $n\\geq 3$, are presented. Some open questions are also proposed.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/AS.2020.1971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Suppose that $G$ is a groupoid with binary operation $\otimes$. The pair $(G,\otimes)$ is said to be a gyrogroup if the operation $\otimes$ has a left identity, each element $a \in G$ has a left inverse and the gyroassociative law and the left loop property are satisfied in $G$. In this paper, a method for constructing new gyrogroups from old ones is presented and the structure of subgyrogroups of these gyrogroups are also given. As a consequence of this work, five $2-$gyrogroups of order $2^n$, $n\geq 3$, are presented. Some open questions are also proposed.
新陀螺群的构造及其子陀螺群的结构
假设$G$是一个具有二进制操作$\otimes$的类群。如果运算$\otimes$有一个左恒等式,每个元素$a \in G$有一个左逆,并且在$G$中满足陀螺结合律和左环性质,则称对$(G,\otimes)$为一个陀螺群。本文提出了一种由旧的陀螺群构造新陀螺群的方法,并给出了这些陀螺群的子陀螺群的结构。作为这项工作的结果,提出了五个阶为$2^n$, $n\geq 3$的$2-$陀螺群。还提出了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信