Jiale Wang, Fu Zheng, Yong Hu, Dong Zhang, Chuan-fang Shi
{"title":"Instantaneous Sub-meter Level Precise Point Positioning of Low-Cost Smartphones","authors":"Jiale Wang, Fu Zheng, Yong Hu, Dong Zhang, Chuan-fang Shi","doi":"10.33012/navi.597","DOIUrl":null,"url":null,"abstract":"The prevalence of inexpensive g lobal n avigation s atellite s ystem (GNSS) chips that facilitate the performance of carrier phase measurements has provided hardware that can be used as the foundation for implementing precise point positioning (PPP) of low-cost smartphones. However, because of the atmospheric delays and high measurement noise associated with low-quality patch antennae, the convergence time of smartphone PPP can increase from minutes to even hours. By establishing the Satellite-based Ionospheric Model (SIM) and Real-time Tropospheric Grid Point (RTGP) models, we aim to achieve instantaneous sub-meter level positioning for smartphone PPP. In both kinematic and static experiments, Xiaomi Mi8 and Huawei P40 smartphone signals can converge to sub-meter accuracy in the horizontal direction within one to six seconds when adopting multi-constellation and dual-frequency PPP solutions augmented by precise atmospheric corrections. The atmospheric augmentation PPP method effectively improves the convergence speed and positioning accuracy compared to what can be achieved using the conventional PPP algorithm, thereby satisfying smartphone users’ demand for rapid and high-accuracy positioning.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":"5 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.597","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of inexpensive g lobal n avigation s atellite s ystem (GNSS) chips that facilitate the performance of carrier phase measurements has provided hardware that can be used as the foundation for implementing precise point positioning (PPP) of low-cost smartphones. However, because of the atmospheric delays and high measurement noise associated with low-quality patch antennae, the convergence time of smartphone PPP can increase from minutes to even hours. By establishing the Satellite-based Ionospheric Model (SIM) and Real-time Tropospheric Grid Point (RTGP) models, we aim to achieve instantaneous sub-meter level positioning for smartphone PPP. In both kinematic and static experiments, Xiaomi Mi8 and Huawei P40 smartphone signals can converge to sub-meter accuracy in the horizontal direction within one to six seconds when adopting multi-constellation and dual-frequency PPP solutions augmented by precise atmospheric corrections. The atmospheric augmentation PPP method effectively improves the convergence speed and positioning accuracy compared to what can be achieved using the conventional PPP algorithm, thereby satisfying smartphone users’ demand for rapid and high-accuracy positioning.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.